Information on Result #1809210
Digital (45, 81, 1385)-net over F32, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(3281, 1385, F32, 36) (dual of [1385, 1304, 37]-code), using
- 345 step Varšamov–Edel lengthening with (ri) = (6, 0, 1, 0, 0, 0, 1, 9 times 0, 1, 17 times 0, 1, 35 times 0, 1, 60 times 0, 1, 92 times 0, 1, 120 times 0) [i] based on linear OA(3268, 1027, F32, 36) (dual of [1027, 959, 37]-code), using
- construction XX applied to C1 = C([1022,33]), C2 = C([0,34]), C3 = C1 + C2 = C([0,33]), and C∩ = C1 ∩ C2 = C([1022,34]) [i] based on
- linear OA(3266, 1023, F32, 35) (dual of [1023, 957, 36]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,33}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3266, 1023, F32, 35) (dual of [1023, 957, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3268, 1023, F32, 36) (dual of [1023, 955, 37]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(3264, 1023, F32, 34) (dual of [1023, 959, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,33]), C2 = C([0,34]), C3 = C1 + C2 = C([0,33]), and C∩ = C1 ∩ C2 = C([1022,34]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.