Information on Result #1868417
There is no (76, m, 86)-net in base 2 with unbounded m, because logical equivalence would yield (76, m, 86)-net in base 2 for arbitrarily large m, but
- m-reduction [i] would yield (76, 593, 86)-net in base 2, but
- extracting embedded OOA [i] would yield OOA(2593, 86, S2, 7, 517), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 11 022150 729840 137546 048583 387929 646807 376810 304393 973015 613464 781990 796530 315537 263874 221848 765744 453578 025636 311267 721265 737120 044062 528161 574511 278115 216043 756264 165285 259672 289280 / 259 > 2593 [i]
- extracting embedded OOA [i] would yield OOA(2593, 86, S2, 7, 517), but
Mode: Bound.
Optimality
Show details for fixed t and s.
Other Results with Identical Parameters
None.
Depending Results
None.