Information on Result #1868441
There is no (88, m, 98)-net in base 2 with unbounded m, because logical equivalence would yield (88, m, 98)-net in base 2 for arbitrarily large m, but
- m-reduction [i] would yield (88, 677, 98)-net in base 2, but
- extracting embedded OOA [i] would yield OOA(2677, 98, S2, 7, 589), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 198 150032 149468 186889 666653 035893 518723 715231 143489 234399 969192 191328 926176 771824 334611 728842 701667 617288 424749 201812 362350 719045 526752 712815 807994 309186 261723 738989 839147 149685 450285 374098 536808 219989 245952 / 295 > 2677 [i]
- extracting embedded OOA [i] would yield OOA(2677, 98, S2, 7, 589), but
Mode: Bound.
Optimality
Show details for fixed t and s.
Other Results with Identical Parameters
None.
Depending Results
None.