Information on Result #1868448
There is no (92, 92+k, 102)-net in base 2 for arbitrarily large k, because logical equivalence would yield (92, m, 102)-net in base 2 for arbitrarily large m, but
- m-reduction [i] would yield (92, 705, 102)-net in base 2, but
- extracting embedded OOA [i] would yield OOA(2705, 102, S2, 7, 613), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 51843 899445 660769 287367 196285 666548 127664 149096 625201 559215 056580 645424 112752 028582 752297 381551 911775 293144 141046 492513 779519 524257 811570 874987 742379 544937 657158 684502 641949 959777 037997 707884 701425 866289 107861 241856 / 307 > 2705 [i]
- extracting embedded OOA [i] would yield OOA(2705, 102, S2, 7, 613), but
Mode: Bound.
Optimality
Show details for fixed k and s, k and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.