Information on Result #2026392
There is no OA(251, 55, S2, 28), because adding a parity check bit would yield OA(252, 56, S2, 29), but
- the (dual) Plotkin bound shows that M ≥ 72057 594037 927936 / 15 > 252 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(253, 57, S2, 30) | [i] | Truncation | |
2 | No OA(254, 58, S2, 31) | [i] | ||
3 | No OOA(252, 55, S2, 2, 29) | [i] | m-Reduction for OOAs | |
4 | No OOA(253, 55, S2, 2, 30) | [i] | ||
5 | No OOA(254, 55, S2, 2, 31) | [i] | ||
6 | No OOA(255, 55, S2, 2, 32) | [i] | ||
7 | No OOA(256, 55, S2, 2, 33) | [i] | ||
8 | No OOA(257, 55, S2, 2, 34) | [i] | ||
9 | No OOA(258, 55, S2, 2, 35) | [i] | ||
10 | No OOA(259, 55, S2, 2, 36) | [i] | ||
11 | No OOA(260, 55, S2, 2, 37) | [i] | ||
12 | No OOA(261, 55, S2, 2, 38) | [i] | ||
13 | No OOA(262, 55, S2, 2, 39) | [i] | ||
14 | No OOA(263, 55, S2, 2, 40) | [i] | ||
15 | No OOA(264, 55, S2, 2, 41) | [i] | ||
16 | No OOA(265, 55, S2, 2, 42) | [i] | ||
17 | No OOA(266, 55, S2, 2, 43) | [i] | ||
18 | No OOA(267, 55, S2, 2, 44) | [i] | ||
19 | No OOA(268, 55, S2, 2, 45) | [i] | ||
20 | No OOA(269, 55, S2, 2, 46) | [i] | ||
21 | No OOA(270, 55, S2, 2, 47) | [i] | ||
22 | No OOA(271, 55, S2, 2, 48) | [i] | ||
23 | No OOA(251, 55, S2, 2, 28) | [i] | Depth Reduction | |
24 | No OOA(251, 55, S2, 3, 28) | [i] | ||
25 | No OOA(251, 55, S2, 4, 28) | [i] | ||
26 | No OOA(251, 55, S2, 5, 28) | [i] | ||
27 | No OOA(251, 55, S2, 6, 28) | [i] | ||
28 | No OOA(251, 55, S2, 7, 28) | [i] | ||
29 | No OOA(251, 55, S2, 8, 28) | [i] | ||
30 | No (23, 51, 55)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |