Information on Result #2026584
There is no OA(2242, 249, S2, 124), because adding a parity check bit would yield OA(2243, 250, S2, 125), but
- the (dual) Plotkin bound shows that M ≥ 904 625697 166532 776746 648320 380374 280103 671755 200316 906558 262375 061821 325312 / 63 > 2243 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(2243, 249, S2, 2, 125) | [i] | m-Reduction for OOAs | |
2 | No OOA(2244, 249, S2, 2, 126) | [i] | ||
3 | No OOA(2245, 249, S2, 2, 127) | [i] | ||
4 | No OOA(2246, 249, S2, 2, 128) | [i] | ||
5 | No OOA(2247, 249, S2, 2, 129) | [i] | ||
6 | No OOA(2248, 249, S2, 2, 130) | [i] | ||
7 | No OOA(2249, 249, S2, 2, 131) | [i] | ||
8 | No OOA(2250, 249, S2, 2, 132) | [i] | ||
9 | No OOA(2251, 249, S2, 2, 133) | [i] | ||
10 | No OOA(2252, 249, S2, 2, 134) | [i] | ||
11 | No OOA(2253, 249, S2, 2, 135) | [i] | ||
12 | No OOA(2254, 249, S2, 2, 136) | [i] | ||
13 | No OOA(2255, 249, S2, 2, 137) | [i] | ||
14 | No OOA(2256, 249, S2, 2, 138) | [i] | ||
15 | No OOA(2257, 249, S2, 2, 139) | [i] | ||
16 | No OOA(2258, 249, S2, 2, 140) | [i] | ||
17 | No OOA(2259, 249, S2, 2, 141) | [i] | ||
18 | No OOA(2260, 249, S2, 2, 142) | [i] | ||
19 | No OOA(2242, 249, S2, 2, 124) | [i] | Depth Reduction | |
20 | No OOA(2242, 249, S2, 3, 124) | [i] | ||
21 | No OOA(2242, 249, S2, 4, 124) | [i] | ||
22 | No OOA(2242, 249, S2, 5, 124) | [i] | ||
23 | No OOA(2242, 249, S2, 6, 124) | [i] | ||
24 | No OOA(2242, 249, S2, 7, 124) | [i] | ||
25 | No OOA(2242, 249, S2, 8, 124) | [i] | ||
26 | No (118, 242, 249)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |