Information on Result #2026589
There is no OA(2248, 254, S2, 128), because adding a parity check bit would yield OA(2249, 255, S2, 129), but
- the (dual) Plotkin bound shows that M ≥ 14474 011154 664524 427946 373126 085988 481658 748083 205070 504932 198000 989141 204992 / 13 > 2249 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2250, 256, S2, 130) | [i] | Truncation | |
2 | No OA(2251, 257, S2, 131) | [i] | ||
3 | No OOA(2249, 254, S2, 2, 129) | [i] | m-Reduction for OOAs | |
4 | No OOA(2250, 254, S2, 2, 130) | [i] | ||
5 | No OOA(2251, 254, S2, 2, 131) | [i] | ||
6 | No OOA(2252, 254, S2, 2, 132) | [i] | ||
7 | No OOA(2253, 254, S2, 2, 133) | [i] | ||
8 | No OOA(2254, 254, S2, 2, 134) | [i] | ||
9 | No OOA(2255, 254, S2, 2, 135) | [i] | ||
10 | No OOA(2256, 254, S2, 2, 136) | [i] | ||
11 | No OOA(2257, 254, S2, 2, 137) | [i] | ||
12 | No OOA(2258, 254, S2, 2, 138) | [i] | ||
13 | No OOA(2259, 254, S2, 2, 139) | [i] | ||
14 | No OOA(2260, 254, S2, 2, 140) | [i] | ||
15 | No OOA(2248, 254, S2, 2, 128) | [i] | Depth Reduction | |
16 | No OOA(2248, 254, S2, 3, 128) | [i] | ||
17 | No OOA(2248, 254, S2, 4, 128) | [i] | ||
18 | No OOA(2248, 254, S2, 5, 128) | [i] | ||
19 | No OOA(2248, 254, S2, 6, 128) | [i] | ||
20 | No OOA(2248, 254, S2, 7, 128) | [i] | ||
21 | No OOA(2248, 254, S2, 8, 128) | [i] | ||
22 | No (120, 248, 254)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |