Information on Result #2156188

There is no linear OA(213, 28, F2, 6) (dual of [28, 15, 7]-code), because adding a parity check bit would yield linear OA(214, 29, F2, 7) (dual of [29, 15, 8]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(214, 28, F2, 2, 7) (dual of [(28, 2), 42, 8]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(213, 28, F2, 2, 6) (dual of [(28, 2), 43, 7]-NRT-code) [i]Depth Reduction
3No linear OOA(213, 28, F2, 3, 6) (dual of [(28, 3), 71, 7]-NRT-code) [i]
4No linear OOA(213, 28, F2, 4, 6) (dual of [(28, 4), 99, 7]-NRT-code) [i]
5No linear OOA(213, 28, F2, 5, 6) (dual of [(28, 5), 127, 7]-NRT-code) [i]
6No linear OOA(213, 28, F2, 6, 6) (dual of [(28, 6), 155, 7]-NRT-code) [i]
7No linear OOA(213, 28, F2, 7, 6) (dual of [(28, 7), 183, 7]-NRT-code) [i]
8No linear OOA(213, 28, F2, 8, 6) (dual of [(28, 8), 211, 7]-NRT-code) [i]
9No digital (7, 13, 28)-net over F2 [i]Extracting Embedded Orthogonal Array