Information on Result #2156199

There is no linear OA(225, 38, F2, 12) (dual of [38, 13, 13]-code), because adding a parity check bit would yield linear OA(226, 39, F2, 13) (dual of [39, 13, 14]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(226, 38, F2, 2, 13) (dual of [(38, 2), 50, 14]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(225, 38, F2, 2, 12) (dual of [(38, 2), 51, 13]-NRT-code) [i]Depth Reduction
3No linear OOA(225, 38, F2, 3, 12) (dual of [(38, 3), 89, 13]-NRT-code) [i]
4No linear OOA(225, 38, F2, 4, 12) (dual of [(38, 4), 127, 13]-NRT-code) [i]
5No linear OOA(225, 38, F2, 5, 12) (dual of [(38, 5), 165, 13]-NRT-code) [i]
6No linear OOA(225, 38, F2, 6, 12) (dual of [(38, 6), 203, 13]-NRT-code) [i]
7No linear OOA(225, 38, F2, 7, 12) (dual of [(38, 7), 241, 13]-NRT-code) [i]
8No linear OOA(225, 38, F2, 8, 12) (dual of [(38, 8), 279, 13]-NRT-code) [i]
9No digital (13, 25, 38)-net over F2 [i]Extracting Embedded Orthogonal Array
10No linear OA(249, 63, F2, 24) (dual of [63, 14, 25]-code) [i]Residual Code