Information on Result #2156203

There is no linear OA(228, 38, F2, 14) (dual of [38, 10, 15]-code), because adding a parity check bit would yield linear OA(229, 39, F2, 15) (dual of [39, 10, 16]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(229, 38, F2, 2, 15) (dual of [(38, 2), 47, 16]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(228, 38, F2, 2, 14) (dual of [(38, 2), 48, 15]-NRT-code) [i]Depth Reduction
3No linear OOA(228, 38, F2, 3, 14) (dual of [(38, 3), 86, 15]-NRT-code) [i]
4No linear OOA(228, 38, F2, 4, 14) (dual of [(38, 4), 124, 15]-NRT-code) [i]
5No linear OOA(228, 38, F2, 5, 14) (dual of [(38, 5), 162, 15]-NRT-code) [i]
6No linear OOA(228, 38, F2, 6, 14) (dual of [(38, 6), 200, 15]-NRT-code) [i]
7No linear OOA(228, 38, F2, 7, 14) (dual of [(38, 7), 238, 15]-NRT-code) [i]
8No linear OOA(228, 38, F2, 8, 14) (dual of [(38, 8), 276, 15]-NRT-code) [i]
9No digital (14, 28, 38)-net over F2 [i]Extracting Embedded Orthogonal Array