Information on Result #2156227

There is no linear OA(259, 68, F2, 30) (dual of [68, 9, 31]-code), because adding a parity check bit would yield linear OA(260, 69, F2, 31) (dual of [69, 9, 32]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(260, 68, F2, 2, 31) (dual of [(68, 2), 76, 32]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(259, 68, F2, 2, 30) (dual of [(68, 2), 77, 31]-NRT-code) [i]Depth Reduction
3No linear OOA(259, 68, F2, 3, 30) (dual of [(68, 3), 145, 31]-NRT-code) [i]
4No linear OOA(259, 68, F2, 4, 30) (dual of [(68, 4), 213, 31]-NRT-code) [i]
5No linear OOA(259, 68, F2, 5, 30) (dual of [(68, 5), 281, 31]-NRT-code) [i]
6No linear OOA(259, 68, F2, 6, 30) (dual of [(68, 6), 349, 31]-NRT-code) [i]
7No linear OOA(259, 68, F2, 7, 30) (dual of [(68, 7), 417, 31]-NRT-code) [i]
8No linear OOA(259, 68, F2, 8, 30) (dual of [(68, 8), 485, 31]-NRT-code) [i]
9No digital (29, 59, 68)-net over F2 [i]Extracting Embedded Orthogonal Array
10No linear OA(2119, 129, F2, 60) (dual of [129, 10, 61]-code) [i]Residual Code