Information on Result #2156238
There is no linear OA(274, 92, F2, 36) (dual of [92, 18, 37]-code), because adding a parity check bit would yield linear OA(275, 93, F2, 37) (dual of [93, 18, 38]-code), but
- “Bro†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(275, 92, F2, 2, 37) (dual of [(92, 2), 109, 38]-NRT-code) | [i] | m-Reduction for OOAs | |
2 | No linear OOA(274, 92, F2, 2, 36) (dual of [(92, 2), 110, 37]-NRT-code) | [i] | Depth Reduction | |
3 | No linear OOA(274, 92, F2, 3, 36) (dual of [(92, 3), 202, 37]-NRT-code) | [i] | ||
4 | No linear OOA(274, 92, F2, 4, 36) (dual of [(92, 4), 294, 37]-NRT-code) | [i] | ||
5 | No linear OOA(274, 92, F2, 5, 36) (dual of [(92, 5), 386, 37]-NRT-code) | [i] | ||
6 | No linear OOA(274, 92, F2, 6, 36) (dual of [(92, 6), 478, 37]-NRT-code) | [i] | ||
7 | No linear OOA(274, 92, F2, 7, 36) (dual of [(92, 7), 570, 37]-NRT-code) | [i] | ||
8 | No linear OOA(274, 92, F2, 8, 36) (dual of [(92, 8), 662, 37]-NRT-code) | [i] | ||
9 | No digital (38, 74, 92)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
10 | No linear OA(2146, 165, F2, 72) (dual of [165, 19, 73]-code) | [i] | Residual Code |