Information on Result #2156255

There is no linear OA(2105, 118, F2, 52) (dual of [118, 13, 53]-code), because adding a parity check bit would yield linear OA(2106, 119, F2, 53) (dual of [119, 13, 54]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2106, 118, F2, 2, 53) (dual of [(118, 2), 130, 54]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2105, 118, F2, 2, 52) (dual of [(118, 2), 131, 53]-NRT-code) [i]Depth Reduction
3No linear OOA(2105, 118, F2, 3, 52) (dual of [(118, 3), 249, 53]-NRT-code) [i]
4No linear OOA(2105, 118, F2, 4, 52) (dual of [(118, 4), 367, 53]-NRT-code) [i]
5No linear OOA(2105, 118, F2, 5, 52) (dual of [(118, 5), 485, 53]-NRT-code) [i]
6No linear OOA(2105, 118, F2, 6, 52) (dual of [(118, 6), 603, 53]-NRT-code) [i]
7No linear OOA(2105, 118, F2, 7, 52) (dual of [(118, 7), 721, 53]-NRT-code) [i]
8No linear OOA(2105, 118, F2, 8, 52) (dual of [(118, 8), 839, 53]-NRT-code) [i]
9No digital (53, 105, 118)-net over F2 [i]Extracting Embedded Orthogonal Array