Information on Result #2174763

There is no linear OA(2160, 193, F2, 76) (dual of [193, 33, 77]-code), because 3 times code embedding in larger space would yield linear OA(2163, 196, F2, 76) (dual of [196, 33, 77]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2161, 193, F2, 2, 77) (dual of [(193, 2), 225, 78]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2160, 193, F2, 2, 76) (dual of [(193, 2), 226, 77]-NRT-code) [i]Depth Reduction
3No linear OOA(2160, 193, F2, 3, 76) (dual of [(193, 3), 419, 77]-NRT-code) [i]
4No linear OOA(2160, 193, F2, 4, 76) (dual of [(193, 4), 612, 77]-NRT-code) [i]
5No linear OOA(2160, 193, F2, 5, 76) (dual of [(193, 5), 805, 77]-NRT-code) [i]
6No linear OOA(2160, 193, F2, 6, 76) (dual of [(193, 6), 998, 77]-NRT-code) [i]
7No linear OOA(2160, 193, F2, 7, 76) (dual of [(193, 7), 1191, 77]-NRT-code) [i]
8No linear OOA(2160, 193, F2, 8, 76) (dual of [(193, 8), 1384, 77]-NRT-code) [i]
9No digital (84, 160, 193)-net over F2 [i]Extracting Embedded Orthogonal Array