Information on Result #2174799

There is no linear OA(2176, 206, F2, 84) (dual of [206, 30, 85]-code), because 3 times code embedding in larger space would yield linear OA(2179, 209, F2, 84) (dual of [209, 30, 85]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2177, 206, F2, 2, 85) (dual of [(206, 2), 235, 86]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2178, 206, F2, 2, 86) (dual of [(206, 2), 234, 87]-NRT-code) [i]
3No linear OOA(2179, 206, F2, 2, 87) (dual of [(206, 2), 233, 88]-NRT-code) [i]
4No linear OOA(2176, 206, F2, 2, 84) (dual of [(206, 2), 236, 85]-NRT-code) [i]Depth Reduction
5No linear OOA(2176, 206, F2, 3, 84) (dual of [(206, 3), 442, 85]-NRT-code) [i]
6No linear OOA(2176, 206, F2, 4, 84) (dual of [(206, 4), 648, 85]-NRT-code) [i]
7No linear OOA(2176, 206, F2, 5, 84) (dual of [(206, 5), 854, 85]-NRT-code) [i]
8No linear OOA(2176, 206, F2, 6, 84) (dual of [(206, 6), 1060, 85]-NRT-code) [i]
9No linear OOA(2176, 206, F2, 7, 84) (dual of [(206, 7), 1266, 85]-NRT-code) [i]
10No linear OOA(2176, 206, F2, 8, 84) (dual of [(206, 8), 1472, 85]-NRT-code) [i]
11No digital (92, 176, 206)-net over F2 [i]Extracting Embedded Orthogonal Array