Information on Result #2174814

There is no linear OA(2192, 218, F2, 92) (dual of [218, 26, 93]-code), because 2 times code embedding in larger space would yield linear OA(2194, 220, F2, 92) (dual of [220, 26, 93]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2193, 218, F2, 2, 93) (dual of [(218, 2), 243, 94]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2194, 218, F2, 2, 94) (dual of [(218, 2), 242, 95]-NRT-code) [i]
3No linear OOA(2195, 218, F2, 2, 95) (dual of [(218, 2), 241, 96]-NRT-code) [i]
4No linear OOA(2197, 218, F2, 2, 97) (dual of [(218, 2), 239, 98]-NRT-code) [i]
5No linear OOA(2198, 218, F2, 2, 98) (dual of [(218, 2), 238, 99]-NRT-code) [i]
6No linear OOA(2199, 218, F2, 2, 99) (dual of [(218, 2), 237, 100]-NRT-code) [i]
7No linear OOA(2192, 218, F2, 2, 92) (dual of [(218, 2), 244, 93]-NRT-code) [i]Depth Reduction
8No linear OOA(2192, 218, F2, 3, 92) (dual of [(218, 3), 462, 93]-NRT-code) [i]
9No linear OOA(2192, 218, F2, 4, 92) (dual of [(218, 4), 680, 93]-NRT-code) [i]
10No linear OOA(2192, 218, F2, 5, 92) (dual of [(218, 5), 898, 93]-NRT-code) [i]
11No linear OOA(2192, 218, F2, 6, 92) (dual of [(218, 6), 1116, 93]-NRT-code) [i]
12No linear OOA(2192, 218, F2, 7, 92) (dual of [(218, 7), 1334, 93]-NRT-code) [i]
13No linear OOA(2192, 218, F2, 8, 92) (dual of [(218, 8), 1552, 93]-NRT-code) [i]
14No digital (100, 192, 218)-net over F2 [i]Extracting Embedded Orthogonal Array