Information on Result #2174816

There is no linear OA(2190, 216, F2, 92) (dual of [216, 26, 93]-code), because 4 times code embedding in larger space would yield linear OA(2194, 220, F2, 92) (dual of [220, 26, 93]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2191, 216, F2, 2, 93) (dual of [(216, 2), 241, 94]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2192, 216, F2, 2, 94) (dual of [(216, 2), 240, 95]-NRT-code) [i]
3No linear OOA(2193, 216, F2, 2, 95) (dual of [(216, 2), 239, 96]-NRT-code) [i]
4No linear OOA(2190, 216, F2, 2, 92) (dual of [(216, 2), 242, 93]-NRT-code) [i]Depth Reduction
5No linear OOA(2190, 216, F2, 3, 92) (dual of [(216, 3), 458, 93]-NRT-code) [i]
6No linear OOA(2190, 216, F2, 4, 92) (dual of [(216, 4), 674, 93]-NRT-code) [i]
7No linear OOA(2190, 216, F2, 5, 92) (dual of [(216, 5), 890, 93]-NRT-code) [i]
8No linear OOA(2190, 216, F2, 6, 92) (dual of [(216, 6), 1106, 93]-NRT-code) [i]
9No linear OOA(2190, 216, F2, 7, 92) (dual of [(216, 7), 1322, 93]-NRT-code) [i]
10No linear OOA(2190, 216, F2, 8, 92) (dual of [(216, 8), 1538, 93]-NRT-code) [i]
11No digital (98, 190, 216)-net over F2 [i]Extracting Embedded Orthogonal Array