Information on Result #2174834

There is no linear OA(2250, 256, F2, 128) (dual of [256, 6, 129]-code), because 1 times code embedding in larger space would yield linear OA(2251, 257, F2, 128) (dual of [257, 6, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2251, 256, F2, 2, 129) (dual of [(256, 2), 261, 130]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2252, 256, F2, 2, 130) (dual of [(256, 2), 260, 131]-NRT-code) [i]
3No linear OOA(2253, 256, F2, 2, 131) (dual of [(256, 2), 259, 132]-NRT-code) [i]
4No linear OOA(2254, 256, F2, 2, 132) (dual of [(256, 2), 258, 133]-NRT-code) [i]
5No linear OOA(2255, 256, F2, 2, 133) (dual of [(256, 2), 257, 134]-NRT-code) [i]
6No linear OOA(2256, 256, F2, 2, 134) (dual of [(256, 2), 256, 135]-NRT-code) [i]
7No linear OOA(2257, 256, F2, 2, 135) (dual of [(256, 2), 255, 136]-NRT-code) [i]
8No linear OOA(2258, 256, F2, 2, 136) (dual of [(256, 2), 254, 137]-NRT-code) [i]
9No linear OOA(2259, 256, F2, 2, 137) (dual of [(256, 2), 253, 138]-NRT-code) [i]
10No linear OOA(2260, 256, F2, 2, 138) (dual of [(256, 2), 252, 139]-NRT-code) [i]
11No linear OOA(2250, 256, F2, 2, 128) (dual of [(256, 2), 262, 129]-NRT-code) [i]Depth Reduction
12No linear OOA(2250, 256, F2, 3, 128) (dual of [(256, 3), 518, 129]-NRT-code) [i]
13No linear OOA(2250, 256, F2, 4, 128) (dual of [(256, 4), 774, 129]-NRT-code) [i]
14No linear OOA(2250, 256, F2, 5, 128) (dual of [(256, 5), 1030, 129]-NRT-code) [i]
15No linear OOA(2250, 256, F2, 6, 128) (dual of [(256, 6), 1286, 129]-NRT-code) [i]
16No linear OOA(2250, 256, F2, 7, 128) (dual of [(256, 7), 1542, 129]-NRT-code) [i]
17No linear OOA(2250, 256, F2, 8, 128) (dual of [(256, 8), 1798, 129]-NRT-code) [i]
18No digital (122, 250, 256)-net over F2 [i]Extracting Embedded Orthogonal Array