Information on Result #2219347

Linear OA(28, 17, F2, 4) (dual of [17, 9, 5]-code), using 1 times truncation based on linear OA(29, 18, F2, 5) (dual of [18, 9, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(296, 105, F2, 44) (dual of [105, 9, 45]-code) [i]Juxtaposition
2Linear OA(2204, 213, F2, 100) (dual of [213, 9, 101]-code) [i]
3Linear OA(2218, 227, F2, 104) (dual of [227, 9, 105]-code) [i]
4Linear OA(2136, 144, F2, 68) (dual of [144, 8, 69]-code) [i]
5Linear OA(272, 79, F2, 36) (dual of [79, 7, 37]-code) [i]
6Linear OA(2135, 142, F2, 68) (dual of [142, 7, 69]-code) [i]
7Linear OA(2193, 271, F2, 60) (dual of [271, 78, 61]-code) [i]Construction X with Cyclic Codes
8Linear OA(2126, 155, F2, 51) (dual of [155, 29, 52]-code) [i]Construction XX with Cyclic Codes
9Linear OA(2140, 162, F2, 59) (dual of [162, 22, 60]-code) [i]
10Linear OA(2245, 292, F2, 95) (dual of [292, 47, 96]-code) [i]
11Linear OA(2260, 307, F2, 97) (dual of [307, 47, 98]-code) [i]
12Linear OA(2240, 285, F2, 95) (dual of [285, 45, 96]-code) [i]
13Linear OA(2248, 285, F2, 99) (dual of [285, 37, 100]-code) [i]
14Linear OA(2195, 274, F2, 60) (dual of [274, 79, 61]-code) [i]Construction XX with a Chain of Cyclic Codes
15Linear OA(234, 45, F2, 15) (dual of [45, 11, 16]-code) [i]Construction X with De Boer–Brouwer Codes
16Linear OOA(28, 8, F2, 2, 4) (dual of [(8, 2), 8, 5]-NRT-code) [i]OOA Folding