Information on Result #2666189
Linear OOA(240, 177, F2, 3, 9) (dual of [(177, 3), 491, 10]-NRT-code), using 21 times duplication based on linear OOA(239, 177, F2, 3, 9) (dual of [(177, 3), 492, 10]-NRT-code), using
- OOA 3-folding [i] based on linear OA(239, 531, F2, 9) (dual of [531, 492, 10]-code), using
- construction XX applied to C1 = C([509,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
- linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(237, 511, F2, 9) (dual of [511, 474, 10]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(219, 511, F2, 5) (dual of [511, 492, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
- construction XX applied to C1 = C([509,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.