Information on Result #486832
There is no (0, 2, 6)-net in base 4, because the generalized Rao bound for nets shows that 4m ≥ 19 > 42
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (0, 3, 6)-net in base 4 | [i] | m-Reduction | |
2 | No (0, 4, 6)-net in base 4 | [i] | ||
3 | No (0, 5, 6)-net in base 4 | [i] | ||
4 | No (0, 6, 6)-net in base 4 | [i] | ||
5 | No (0, 7, 6)-net in base 4 | [i] | ||
6 | No (0, 8, 6)-net in base 4 | [i] | ||
7 | No (0, 9, 6)-net in base 4 | [i] | ||
8 | No (0, 10, 6)-net in base 4 | [i] | ||
9 | No (0, 11, 6)-net in base 4 | [i] | ||
10 | No (0, 12, 6)-net in base 4 | [i] | ||
11 | No (0, 13, 6)-net in base 4 | [i] | ||
12 | No (0, 14, 6)-net in base 4 | [i] | ||
13 | No (0, 15, 6)-net in base 4 | [i] | ||
14 | No (0, 16, 6)-net in base 4 | [i] | ||
15 | No (0, 17, 6)-net in base 4 | [i] | ||
16 | No (0, 18, 6)-net in base 4 | [i] | ||
17 | No (0, 19, 6)-net in base 4 | [i] | ||
18 | No (0, 20, 6)-net in base 4 | [i] | ||
19 | No (0, 21, 6)-net in base 4 | [i] | ||
20 | No (0, 22, 6)-net in base 4 | [i] | ||
21 | No (0, 23, 6)-net in base 4 | [i] | ||
22 | No (0, 24, 6)-net in base 4 | [i] | ||
23 | No (0, 25, 6)-net in base 4 | [i] | ||
24 | No (0, 26, 6)-net in base 4 | [i] | ||
25 | No (0, 27, 6)-net in base 4 | [i] | ||
26 | No (0, 28, 6)-net in base 4 | [i] | ||
27 | No (0, 29, 6)-net in base 4 | [i] | ||
28 | No (0, 30, 6)-net in base 4 | [i] | ||
29 | No (0, 31, 6)-net in base 4 | [i] | ||
30 | No (0, 32, 6)-net in base 4 | [i] | ||
31 | No (0, 33, 6)-net in base 4 | [i] | ||
32 | No (0, 34, 6)-net in base 4 | [i] | ||
33 | No (0, 35, 6)-net in base 4 | [i] | ||
34 | No (0, 36, 6)-net in base 4 | [i] | ||
35 | No (0, 37, 6)-net in base 4 | [i] | ||
36 | No (0, 38, 6)-net in base 4 | [i] | ||
37 | No (0, 39, 6)-net in base 4 | [i] | ||
38 | No (0, 40, 6)-net in base 4 | [i] | ||
39 | No (0, 41, 6)-net in base 4 | [i] | ||
40 | No (0, 42, 6)-net in base 4 | [i] | ||
41 | No (0, 43, 6)-net in base 4 | [i] | ||
42 | No (0, 44, 6)-net in base 4 | [i] | ||
43 | No (0, 45, 6)-net in base 4 | [i] | ||
44 | No (0, 46, 6)-net in base 4 | [i] | ||
45 | No (0, 47, 6)-net in base 4 | [i] | ||
46 | No (0, 48, 6)-net in base 4 | [i] | ||
47 | No (0, 49, 6)-net in base 4 | [i] | ||
48 | No (0, 50, 6)-net in base 4 | [i] | ||
49 | No (0, 51, 6)-net in base 4 | [i] | ||
50 | No (0, 52, 6)-net in base 4 | [i] | ||
51 | No (0, 53, 6)-net in base 4 | [i] | ||
52 | No (0, 54, 6)-net in base 4 | [i] | ||
53 | No (0, 55, 6)-net in base 4 | [i] | ||
54 | No (0, 56, 6)-net in base 4 | [i] | ||
55 | No (0, 57, 6)-net in base 4 | [i] | ||
56 | No (0, 58, 6)-net in base 4 | [i] | ||
57 | No (0, 59, 6)-net in base 4 | [i] | ||
58 | No (0, 60, 6)-net in base 4 | [i] | ||
59 | No (0, 61, 6)-net in base 4 | [i] | ||
60 | No (0, 62, 6)-net in base 4 | [i] | ||
61 | No (0, 63, 6)-net in base 4 | [i] | ||
62 | No (0, 64, 6)-net in base 4 | [i] | ||
63 | No (0, 65, 6)-net in base 4 | [i] | ||
64 | No (0, 66, 6)-net in base 4 | [i] | ||
65 | No (0, 67, 6)-net in base 4 | [i] | ||
66 | No (0, 68, 6)-net in base 4 | [i] | ||
67 | No (0, 69, 6)-net in base 4 | [i] | ||
68 | No (0, 70, 6)-net in base 4 | [i] | ||
69 | No (0, 71, 6)-net in base 4 | [i] | ||
70 | No (0, 72, 6)-net in base 4 | [i] | ||
71 | No (0, 73, 6)-net in base 4 | [i] | ||
72 | No (0, 74, 6)-net in base 4 | [i] | ||
73 | No (0, 75, 6)-net in base 4 | [i] | ||
74 | No (0, 76, 6)-net in base 4 | [i] | ||
75 | No (0, 77, 6)-net in base 4 | [i] | ||
76 | No (0, 78, 6)-net in base 4 | [i] | ||
77 | No (0, 79, 6)-net in base 4 | [i] | ||
78 | No (0, 80, 6)-net in base 4 | [i] | ||
79 | No (0, 81, 6)-net in base 4 | [i] | ||
80 | No (0, 82, 6)-net in base 4 | [i] | ||
81 | No (0, 83, 6)-net in base 4 | [i] | ||
82 | No (0, 84, 6)-net in base 4 | [i] | ||
83 | No (0, 85, 6)-net in base 4 | [i] | ||
84 | No (0, 86, 6)-net in base 4 | [i] | ||
85 | No (0, 87, 6)-net in base 4 | [i] | ||
86 | No (0, 88, 6)-net in base 4 | [i] | ||
87 | No (0, 89, 6)-net in base 4 | [i] | ||
88 | No (0, 90, 6)-net in base 4 | [i] | ||
89 | No (0, 91, 6)-net in base 4 | [i] | ||
90 | No (0, 92, 6)-net in base 4 | [i] | ||
91 | No (0, 93, 6)-net in base 4 | [i] | ||
92 | No (0, 94, 6)-net in base 4 | [i] | ||
93 | No (0, 95, 6)-net in base 4 | [i] | ||
94 | No (0, 96, 6)-net in base 4 | [i] | ||
95 | No (0, 97, 6)-net in base 4 | [i] | ||
96 | No (0, 98, 6)-net in base 4 | [i] | ||
97 | No (0, 99, 6)-net in base 4 | [i] | ||
98 | No (0, 100, 6)-net in base 4 | [i] | ||
99 | No (0, 101, 6)-net in base 4 | [i] | ||
100 | No (0, 102, 6)-net in base 4 | [i] | ||
101 | No (0, 103, 6)-net in base 4 | [i] | ||
102 | No (0, 104, 6)-net in base 4 | [i] | ||
103 | No (0, 105, 6)-net in base 4 | [i] | ||
104 | No (0, 106, 6)-net in base 4 | [i] | ||
105 | No (0, 107, 6)-net in base 4 | [i] | ||
106 | No (0, 108, 6)-net in base 4 | [i] | ||
107 | No (0, 109, 6)-net in base 4 | [i] | ||
108 | No (0, 110, 6)-net in base 4 | [i] | ||
109 | No (0, 111, 6)-net in base 4 | [i] | ||
110 | No (0, 112, 6)-net in base 4 | [i] | ||
111 | No (0, 113, 6)-net in base 4 | [i] | ||
112 | No (0, 114, 6)-net in base 4 | [i] | ||
113 | No (0, 115, 6)-net in base 4 | [i] | ||
114 | No (0, 116, 6)-net in base 4 | [i] | ||
115 | No (0, 117, 6)-net in base 4 | [i] | ||
116 | No (0, 118, 6)-net in base 4 | [i] | ||
117 | No (0, 119, 6)-net in base 4 | [i] | ||
118 | No (0, 120, 6)-net in base 4 | [i] | ||
119 | No (0, 121, 6)-net in base 4 | [i] | ||
120 | No (0, 122, 6)-net in base 4 | [i] | ||
121 | No (0, 123, 6)-net in base 4 | [i] | ||
122 | No (0, 124, 6)-net in base 4 | [i] | ||
123 | No (0, 125, 6)-net in base 4 | [i] | ||
124 | No (0, 126, 6)-net in base 4 | [i] | ||
125 | No (0, 127, 6)-net in base 4 | [i] | ||
126 | No (0, 128, 6)-net in base 4 | [i] | ||
127 | No (0, 129, 6)-net in base 4 | [i] | ||
128 | No (0, 130, 6)-net in base 4 | [i] | ||
129 | No (0, 131, 6)-net in base 4 | [i] | ||
130 | No (0, 132, 6)-net in base 4 | [i] | ||
131 | No (0, 133, 6)-net in base 4 | [i] | ||
132 | No (0, 134, 6)-net in base 4 | [i] | ||
133 | No (0, 135, 6)-net in base 4 | [i] | ||
134 | No (0, 136, 6)-net in base 4 | [i] | ||
135 | No (0, 137, 6)-net in base 4 | [i] | ||
136 | No (0, 138, 6)-net in base 4 | [i] | ||
137 | No (0, 139, 6)-net in base 4 | [i] | ||
138 | No (0, 140, 6)-net in base 4 | [i] | ||
139 | No (0, 141, 6)-net in base 4 | [i] | ||
140 | No (0, 142, 6)-net in base 4 | [i] | ||
141 | No (0, 143, 6)-net in base 4 | [i] | ||
142 | No (0, 144, 6)-net in base 4 | [i] | ||
143 | No (0, 145, 6)-net in base 4 | [i] | ||
144 | No (0, 146, 6)-net in base 4 | [i] | ||
145 | No (0, 147, 6)-net in base 4 | [i] | ||
146 | No (0, 148, 6)-net in base 4 | [i] | ||
147 | No (0, 149, 6)-net in base 4 | [i] | ||
148 | No (0, 150, 6)-net in base 4 | [i] | ||
149 | No (0, 151, 6)-net in base 4 | [i] | ||
150 | No (0, 152, 6)-net in base 4 | [i] | ||
151 | No (0, 153, 6)-net in base 4 | [i] | ||
152 | No (0, 154, 6)-net in base 4 | [i] | ||
153 | No (0, 155, 6)-net in base 4 | [i] | ||
154 | No (0, 156, 6)-net in base 4 | [i] | ||
155 | No (0, 157, 6)-net in base 4 | [i] | ||
156 | No (0, 158, 6)-net in base 4 | [i] | ||
157 | No (0, 159, 6)-net in base 4 | [i] | ||
158 | No (0, 160, 6)-net in base 4 | [i] | ||
159 | No (0, 161, 6)-net in base 4 | [i] | ||
160 | No (0, 162, 6)-net in base 4 | [i] | ||
161 | No (0, 163, 6)-net in base 4 | [i] | ||
162 | No (0, 164, 6)-net in base 4 | [i] | ||
163 | No (0, 165, 6)-net in base 4 | [i] | ||
164 | No (0, 166, 6)-net in base 4 | [i] | ||
165 | No (0, 167, 6)-net in base 4 | [i] | ||
166 | No (0, 168, 6)-net in base 4 | [i] | ||
167 | No (0, 169, 6)-net in base 4 | [i] | ||
168 | No (0, 170, 6)-net in base 4 | [i] | ||
169 | No (0, 171, 6)-net in base 4 | [i] | ||
170 | No (0, 172, 6)-net in base 4 | [i] | ||
171 | No (0, 173, 6)-net in base 4 | [i] | ||
172 | No (0, 174, 6)-net in base 4 | [i] | ||
173 | No (0, 175, 6)-net in base 4 | [i] | ||
174 | No (0, 176, 6)-net in base 4 | [i] | ||
175 | No (0, 177, 6)-net in base 4 | [i] | ||
176 | No (0, 178, 6)-net in base 4 | [i] | ||
177 | No (0, 179, 6)-net in base 4 | [i] | ||
178 | No (0, 180, 6)-net in base 4 | [i] | ||
179 | No (0, 181, 6)-net in base 4 | [i] | ||
180 | No (0, 182, 6)-net in base 4 | [i] | ||
181 | No (0, 183, 6)-net in base 4 | [i] | ||
182 | No (0, 184, 6)-net in base 4 | [i] | ||
183 | No (0, 185, 6)-net in base 4 | [i] | ||
184 | No (0, 186, 6)-net in base 4 | [i] | ||
185 | No (0, 187, 6)-net in base 4 | [i] | ||
186 | No (0, 188, 6)-net in base 4 | [i] | ||
187 | No (0, 189, 6)-net in base 4 | [i] | ||
188 | No (0, 190, 6)-net in base 4 | [i] | ||
189 | No (0, 191, 6)-net in base 4 | [i] | ||
190 | No (0, 192, 6)-net in base 4 | [i] | ||
191 | No (0, 193, 6)-net in base 4 | [i] | ||
192 | No (0, 194, 6)-net in base 4 | [i] | ||
193 | No (0, 195, 6)-net in base 4 | [i] | ||
194 | No (0, 196, 6)-net in base 4 | [i] | ||
195 | No (0, 197, 6)-net in base 4 | [i] | ||
196 | No (0, 198, 6)-net in base 4 | [i] | ||
197 | No (0, 199, 6)-net in base 4 | [i] | ||
198 | No (0, 200, 6)-net in base 4 | [i] | ||
199 | No (0, 201, 6)-net in base 4 | [i] | ||
200 | No (0, 202, 6)-net in base 4 | [i] | ||
201 | No (0, 203, 6)-net in base 4 | [i] | ||
202 | No (0, 204, 6)-net in base 4 | [i] | ||
203 | No (0, 205, 6)-net in base 4 | [i] | ||
204 | No (0, 206, 6)-net in base 4 | [i] | ||
205 | No (0, 207, 6)-net in base 4 | [i] | ||
206 | No (0, 208, 6)-net in base 4 | [i] | ||
207 | No (0, 209, 6)-net in base 4 | [i] | ||
208 | No (0, 210, 6)-net in base 4 | [i] | ||
209 | No (0, 211, 6)-net in base 4 | [i] | ||
210 | No (0, 212, 6)-net in base 4 | [i] | ||
211 | No (0, 213, 6)-net in base 4 | [i] | ||
212 | No (0, 214, 6)-net in base 4 | [i] | ||
213 | No (0, 215, 6)-net in base 4 | [i] | ||
214 | No (0, 216, 6)-net in base 4 | [i] | ||
215 | No (0, 217, 6)-net in base 4 | [i] | ||
216 | No (0, 218, 6)-net in base 4 | [i] | ||
217 | No (0, 219, 6)-net in base 4 | [i] | ||
218 | No (0, 220, 6)-net in base 4 | [i] | ||
219 | No (0, 221, 6)-net in base 4 | [i] | ||
220 | No (0, 222, 6)-net in base 4 | [i] | ||
221 | No (0, 223, 6)-net in base 4 | [i] | ||
222 | No (0, 224, 6)-net in base 4 | [i] | ||
223 | No (0, 225, 6)-net in base 4 | [i] | ||
224 | No (0, 226, 6)-net in base 4 | [i] | ||
225 | No (0, 227, 6)-net in base 4 | [i] | ||
226 | No (0, 228, 6)-net in base 4 | [i] | ||
227 | No (0, 229, 6)-net in base 4 | [i] | ||
228 | No (0, 230, 6)-net in base 4 | [i] | ||
229 | No (0, 231, 6)-net in base 4 | [i] | ||
230 | No (0, 232, 6)-net in base 4 | [i] | ||
231 | No (0, 233, 6)-net in base 4 | [i] | ||
232 | No (0, 234, 6)-net in base 4 | [i] | ||
233 | No (0, 235, 6)-net in base 4 | [i] | ||
234 | No (0, 236, 6)-net in base 4 | [i] | ||
235 | No (0, 237, 6)-net in base 4 | [i] | ||
236 | No (0, 238, 6)-net in base 4 | [i] | ||
237 | No (0, 239, 6)-net in base 4 | [i] | ||
238 | No (0, 240, 6)-net in base 4 | [i] | ||
239 | No (0, 241, 6)-net in base 4 | [i] | ||
240 | No (0, 242, 6)-net in base 4 | [i] | ||
241 | No (0, 243, 6)-net in base 4 | [i] | ||
242 | No (0, 244, 6)-net in base 4 | [i] | ||
243 | No (0, 245, 6)-net in base 4 | [i] | ||
244 | No (0, 246, 6)-net in base 4 | [i] | ||
245 | No (0, 247, 6)-net in base 4 | [i] | ||
246 | No (0, 248, 6)-net in base 4 | [i] | ||
247 | No (0, 249, 6)-net in base 4 | [i] | ||
248 | No (0, 250, 6)-net in base 4 | [i] | ||
249 | No (0, 251, 6)-net in base 4 | [i] | ||
250 | No (0, 252, 6)-net in base 4 | [i] | ||
251 | No (0, 253, 6)-net in base 4 | [i] | ||
252 | No (0, 254, 6)-net in base 4 | [i] | ||
253 | No (0, 255, 6)-net in base 4 | [i] | ||
254 | No (0, 256, 6)-net in base 4 | [i] | ||
255 | No (0, 257, 6)-net in base 4 | [i] | ||
256 | No (0, 258, 6)-net in base 4 | [i] | ||
257 | No (0, 259, 6)-net in base 4 | [i] | ||
258 | No (0, 260, 6)-net in base 4 | [i] | ||
259 | No (0, m, 6)-net in base 4 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |