Information on Result #520594
There is no (68, 136, 148)-net in base 2, because extracting embedded orthogonal array would yield OA(2136, 148, S2, 68), but
- the linear programming bound shows that M ≥ 646 721610 757388 071104 535829 906802 483673 432064 / 6027 > 2136 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (68, 137, 148)-net in base 2 | [i] | m-Reduction | |
2 | No (68, 138, 148)-net in base 2 | [i] | ||
3 | No (68, 139, 148)-net in base 2 | [i] | ||
4 | No (68, 140, 148)-net in base 2 | [i] | ||
5 | No (68, 141, 148)-net in base 2 | [i] | ||
6 | No (68, 142, 148)-net in base 2 | [i] | ||
7 | No (68, 143, 148)-net in base 2 | [i] | ||
8 | No (68, 144, 148)-net in base 2 | [i] | ||
9 | No (68, 145, 148)-net in base 2 | [i] | ||
10 | No (68, 146, 148)-net in base 2 | [i] | ||
11 | No (68, 147, 148)-net in base 2 | [i] | ||
12 | No (68, 148, 148)-net in base 2 | [i] | ||
13 | No (68, 149, 148)-net in base 2 | [i] | ||
14 | No (68, 150, 148)-net in base 2 | [i] | ||
15 | No (68, 151, 148)-net in base 2 | [i] |