Information on Result #520598
There is no (69, 197, 102)-net in base 2, because extracting embedded OOA would yield OOA(2197, 102, S2, 2, 128), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 12 855504 354071 922204 335696 738729 300820 177623 950262 342682 411008 / 43 > 2197 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (69, 198, 102)-net in base 2 | [i] | m-Reduction | |
2 | No (69, 199, 102)-net in base 2 | [i] | ||
3 | No (69, 200, 102)-net in base 2 | [i] | ||
4 | No (69, 201, 102)-net in base 2 | [i] | ||
5 | No (69, 202, 102)-net in base 2 | [i] | ||
6 | No (69, 203, 102)-net in base 2 | [i] | ||
7 | No (69, 204, 102)-net in base 2 | [i] | ||
8 | No (69, 205, 102)-net in base 2 | [i] | ||
9 | No (69, 206, 102)-net in base 2 | [i] | ||
10 | No (69, 207, 102)-net in base 2 | [i] | ||
11 | No (69, 208, 102)-net in base 2 | [i] | ||
12 | No (69, 209, 102)-net in base 2 | [i] | ||
13 | No (69, 210, 102)-net in base 2 | [i] | ||
14 | No (69, 211, 102)-net in base 2 | [i] | ||
15 | No (69, 212, 102)-net in base 2 | [i] | ||
16 | No (69, 213, 102)-net in base 2 | [i] | ||
17 | No (69, 214, 102)-net in base 2 | [i] | ||
18 | No (69, 215, 102)-net in base 2 | [i] | ||
19 | No (69, 216, 102)-net in base 2 | [i] | ||
20 | No (69, 217, 102)-net in base 2 | [i] | ||
21 | No (69, 218, 102)-net in base 2 | [i] | ||
22 | No (69, 219, 102)-net in base 2 | [i] | ||
23 | No (69, 220, 102)-net in base 2 | [i] | ||
24 | No (69, 221, 102)-net in base 2 | [i] | ||
25 | No (69, 222, 102)-net in base 2 | [i] | ||
26 | No (69, 223, 102)-net in base 2 | [i] | ||
27 | No (69, 224, 102)-net in base 2 | [i] | ||
28 | No (69, 225, 102)-net in base 2 | [i] | ||
29 | No (69, 226, 102)-net in base 2 | [i] | ||
30 | No (69, 227, 102)-net in base 2 | [i] | ||
31 | No (69, 228, 102)-net in base 2 | [i] | ||
32 | No (69, 229, 102)-net in base 2 | [i] | ||
33 | No (69, 230, 102)-net in base 2 | [i] | ||
34 | No (69, 231, 102)-net in base 2 | [i] | ||
35 | No (69, 232, 102)-net in base 2 | [i] | ||
36 | No (69, 233, 102)-net in base 2 | [i] | ||
37 | No (69, 234, 102)-net in base 2 | [i] | ||
38 | No (69, 235, 102)-net in base 2 | [i] | ||
39 | No (69, 236, 102)-net in base 2 | [i] | ||
40 | No (69, 237, 102)-net in base 2 | [i] | ||
41 | No (69, 238, 102)-net in base 2 | [i] | ||
42 | No (69, 239, 102)-net in base 2 | [i] | ||
43 | No (69, 240, 102)-net in base 2 | [i] | ||
44 | No (69, 241, 102)-net in base 2 | [i] | ||
45 | No (69, 242, 102)-net in base 2 | [i] | ||
46 | No (69, 243, 102)-net in base 2 | [i] | ||
47 | No (69, 244, 102)-net in base 2 | [i] | ||
48 | No (69, 245, 102)-net in base 2 | [i] | ||
49 | No (69, 246, 102)-net in base 2 | [i] | ||
50 | No (69, 247, 102)-net in base 2 | [i] | ||
51 | No (69, 248, 102)-net in base 2 | [i] | ||
52 | No (69, 249, 102)-net in base 2 | [i] | ||
53 | No (69, 250, 102)-net in base 2 | [i] | ||
54 | No (69, 251, 102)-net in base 2 | [i] | ||
55 | No (69, 252, 102)-net in base 2 | [i] | ||
56 | No (69, 253, 102)-net in base 2 | [i] | ||
57 | No (69, 254, 102)-net in base 2 | [i] |