Information on Result #520731
There is no (101, 201, 214)-net in base 2, because extracting embedded orthogonal array would yield OA(2201, 214, S2, 100), but
- the linear programming bound shows that M ≥ 128760 731610 384372 798626 338535 112677 014899 081485 827624 307028 656128 / 29087 > 2201 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (101, 202, 214)-net in base 2 | [i] | m-Reduction | |
2 | No (101, 203, 214)-net in base 2 | [i] | ||
3 | No (101, 204, 214)-net in base 2 | [i] | ||
4 | No (101, 205, 214)-net in base 2 | [i] | ||
5 | No (101, 206, 214)-net in base 2 | [i] | ||
6 | No (101, 207, 214)-net in base 2 | [i] | ||
7 | No (101, 208, 214)-net in base 2 | [i] | ||
8 | No (101, 209, 214)-net in base 2 | [i] | ||
9 | No (101, 210, 214)-net in base 2 | [i] | ||
10 | No (101, 211, 214)-net in base 2 | [i] | ||
11 | No (101, 212, 214)-net in base 2 | [i] | ||
12 | No (101, 213, 214)-net in base 2 | [i] | ||
13 | No (101, 214, 214)-net in base 2 | [i] | ||
14 | No (101, 215, 214)-net in base 2 | [i] | ||
15 | No (101, 216, 214)-net in base 2 | [i] | ||
16 | No (101, 217, 214)-net in base 2 | [i] | ||
17 | No (101, 218, 214)-net in base 2 | [i] | ||
18 | No (101, 219, 214)-net in base 2 | [i] | ||
19 | No (101, 220, 214)-net in base 2 | [i] | ||
20 | No (101, 221, 214)-net in base 2 | [i] | ||
21 | No (101, 222, 214)-net in base 2 | [i] | ||
22 | No (101, 223, 214)-net in base 2 | [i] | ||
23 | No (101, 224, 214)-net in base 2 | [i] | ||
24 | No (101, 225, 214)-net in base 2 | [i] | ||
25 | No (101, 226, 214)-net in base 2 | [i] |