Information on Result #520739
There is no (102, 202, 216)-net in base 2, because extracting embedded orthogonal array would yield OA(2202, 216, S2, 100), but
- the linear programming bound shows that M ≥ 233661 647139 611257 986005 623923 143771 707548 492919 968340 595502 481408 / 29087 > 2202 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (102, 203, 216)-net in base 2 | [i] | m-Reduction | |
2 | No (102, 204, 216)-net in base 2 | [i] | ||
3 | No (102, 205, 216)-net in base 2 | [i] | ||
4 | No (102, 206, 216)-net in base 2 | [i] | ||
5 | No (102, 207, 216)-net in base 2 | [i] | ||
6 | No (102, 208, 216)-net in base 2 | [i] | ||
7 | No (102, 209, 216)-net in base 2 | [i] | ||
8 | No (102, 210, 216)-net in base 2 | [i] | ||
9 | No (102, 211, 216)-net in base 2 | [i] | ||
10 | No (102, 212, 216)-net in base 2 | [i] | ||
11 | No (102, 213, 216)-net in base 2 | [i] | ||
12 | No (102, 214, 216)-net in base 2 | [i] | ||
13 | No (102, 215, 216)-net in base 2 | [i] | ||
14 | No (102, 216, 216)-net in base 2 | [i] | ||
15 | No (102, 217, 216)-net in base 2 | [i] | ||
16 | No (102, 218, 216)-net in base 2 | [i] | ||
17 | No (102, 219, 216)-net in base 2 | [i] | ||
18 | No (102, 220, 216)-net in base 2 | [i] | ||
19 | No (102, 221, 216)-net in base 2 | [i] | ||
20 | No (102, 222, 216)-net in base 2 | [i] | ||
21 | No (102, 223, 216)-net in base 2 | [i] | ||
22 | No (102, 224, 216)-net in base 2 | [i] | ||
23 | No (102, 225, 216)-net in base 2 | [i] | ||
24 | No (102, 226, 216)-net in base 2 | [i] | ||
25 | No (102, 227, 216)-net in base 2 | [i] | ||
26 | No (102, 228, 216)-net in base 2 | [i] | ||
27 | No (102, 229, 216)-net in base 2 | [i] |