Information on Result #520767
There is no (105, 205, 223)-net in base 2, because extracting embedded orthogonal array would yield OA(2205, 223, S2, 100), but
- the linear programming bound shows that M ≥ 3311 860948 392786 407276 126134 596067 755564 612960 156468 450725 571621 552128 / 60 276645 > 2205 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (105, 206, 223)-net in base 2 | [i] | m-Reduction | |
2 | No (105, 207, 223)-net in base 2 | [i] | ||
3 | No (105, 208, 223)-net in base 2 | [i] |