Information on Result #520910
There is no (118, 226, 251)-net in base 2, because extracting embedded orthogonal array would yield OA(2226, 251, S2, 108), but
- the linear programming bound shows that M ≥ 3 068587 541377 441989 862758 184092 770418 630025 105253 803106 088322 664550 769029 545984 / 21915 413575 > 2226 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (118, 227, 251)-net in base 2 | [i] | m-Reduction | |
2 | No (118, 228, 251)-net in base 2 | [i] | ||
3 | No (118, 229, 251)-net in base 2 | [i] | ||
4 | No (118, 230, 251)-net in base 2 | [i] | ||
5 | No (118, 231, 251)-net in base 2 | [i] | ||
6 | No (118, 232, 251)-net in base 2 | [i] | ||
7 | No (118, 233, 251)-net in base 2 | [i] | ||
8 | No (118, 234, 251)-net in base 2 | [i] | ||
9 | No (118, 235, 251)-net in base 2 | [i] | ||
10 | No (118, 236, 251)-net in base 2 | [i] | ||
11 | No (118, 237, 251)-net in base 2 | [i] | ||
12 | No (118, 238, 251)-net in base 2 | [i] | ||
13 | No (118, 239, 251)-net in base 2 | [i] | ||
14 | No (118, 240, 251)-net in base 2 | [i] | ||
15 | No (118, 241, 251)-net in base 2 | [i] |