Information on Result #520911
There is no (118, 242, 249)-net in base 2, because extracting embedded orthogonal array would yield OA(2242, 249, S2, 124), but
- adding a parity check bit [i] would yield OA(2243, 250, S2, 125), but
- the (dual) Plotkin bound shows that M ≥ 904 625697 166532 776746 648320 380374 280103 671755 200316 906558 262375 061821 325312 / 63 > 2243 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (118, 243, 249)-net in base 2 | [i] | m-Reduction | |
2 | No (118, 244, 249)-net in base 2 | [i] | ||
3 | No (118, 245, 249)-net in base 2 | [i] | ||
4 | No (118, 246, 249)-net in base 2 | [i] | ||
5 | No (118, 247, 249)-net in base 2 | [i] | ||
6 | No (118, 248, 249)-net in base 2 | [i] | ||
7 | No (118, 249, 249)-net in base 2 | [i] | ||
8 | No (118, 250, 249)-net in base 2 | [i] | ||
9 | No (118, 251, 249)-net in base 2 | [i] | ||
10 | No (118, 252, 249)-net in base 2 | [i] | ||
11 | No (118, 253, 249)-net in base 2 | [i] | ||
12 | No (118, 254, 249)-net in base 2 | [i] | ||
13 | No (118, 255, 249)-net in base 2 | [i] | ||
14 | No (118, 256, 249)-net in base 2 | [i] | ||
15 | No (118, 257, 249)-net in base 2 | [i] | ||
16 | No (118, 258, 249)-net in base 2 | [i] | ||
17 | No (118, 259, 249)-net in base 2 | [i] | ||
18 | No (118, 260, 249)-net in base 2 | [i] |