Information on Result #520930
There is no (120, 228, 255)-net in base 2, because extracting embedded orthogonal array would yield OA(2228, 255, S2, 108), but
- the linear programming bound shows that M ≥ 2 619796 018994 278921 458293 535821 563915 180233 403060 117761 392727 838179 034558 103552 / 5817 546149 > 2228 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (120, 229, 255)-net in base 2 | [i] | m-Reduction | |
2 | No (120, 230, 255)-net in base 2 | [i] | ||
3 | No (120, 231, 255)-net in base 2 | [i] | ||
4 | No (120, 232, 255)-net in base 2 | [i] | ||
5 | No (120, 233, 255)-net in base 2 | [i] | ||
6 | No (120, 234, 255)-net in base 2 | [i] | ||
7 | No (120, 235, 255)-net in base 2 | [i] | ||
8 | No (120, 236, 255)-net in base 2 | [i] | ||
9 | No (120, 237, 255)-net in base 2 | [i] | ||
10 | No (120, 238, 255)-net in base 2 | [i] | ||
11 | No (120, 239, 255)-net in base 2 | [i] | ||
12 | No (120, 240, 255)-net in base 2 | [i] | ||
13 | No (120, 241, 255)-net in base 2 | [i] | ||
14 | No (120, 242, 255)-net in base 2 | [i] | ||
15 | No (120, 243, 255)-net in base 2 | [i] | ||
16 | No (120, 244, 255)-net in base 2 | [i] | ||
17 | No (120, 245, 255)-net in base 2 | [i] | ||
18 | No (120, 246, 255)-net in base 2 | [i] | ||
19 | No (120, 247, 255)-net in base 2 | [i] |