Information on Result #520947
There is no (122, 230, 261)-net in base 2, because extracting embedded orthogonal array would yield OA(2230, 261, S2, 108), but
- the linear programming bound shows that M ≥ 2423 906907 580468 277479 349413 556067 053430 053216 032374 525434 104378 793213 098031 316992 / 1 326150 802185 > 2230 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (122, 231, 261)-net in base 2 | [i] | m-Reduction | |
2 | No (122, 232, 261)-net in base 2 | [i] | ||
3 | No (122, 233, 261)-net in base 2 | [i] | ||
4 | No (122, 234, 261)-net in base 2 | [i] | ||
5 | No (122, 235, 261)-net in base 2 | [i] | ||
6 | No (122, 236, 261)-net in base 2 | [i] | ||
7 | No (122, 237, 261)-net in base 2 | [i] | ||
8 | No (122, 238, 261)-net in base 2 | [i] | ||
9 | No (122, 239, 261)-net in base 2 | [i] | ||
10 | No (122, 240, 261)-net in base 2 | [i] | ||
11 | No (122, 241, 261)-net in base 2 | [i] | ||
12 | No (122, 242, 261)-net in base 2 | [i] | ||
13 | No (122, 243, 261)-net in base 2 | [i] | ||
14 | No (122, 244, 261)-net in base 2 | [i] | ||
15 | No (122, 245, 261)-net in base 2 | [i] | ||
16 | No (122, 246, 261)-net in base 2 | [i] | ||
17 | No (122, 247, 261)-net in base 2 | [i] | ||
18 | No (122, 248, 261)-net in base 2 | [i] | ||
19 | No (122, 249, 261)-net in base 2 | [i] | ||
20 | No (122, 250, 261)-net in base 2 | [i] | ||
21 | No (122, 251, 261)-net in base 2 | [i] |