Information on Result #520956
There is no (123, 233, 263)-net in base 2, because extracting embedded orthogonal array would yield OA(2233, 263, S2, 110), but
- the linear programming bound shows that M ≥ 208 361079 889821 744668 890387 660731 037374 858559 867656 192612 204735 454426 713127 124992 / 13955 210325 > 2233 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (123, 234, 263)-net in base 2 | [i] | m-Reduction | |
2 | No (123, 235, 263)-net in base 2 | [i] | ||
3 | No (123, 236, 263)-net in base 2 | [i] | ||
4 | No (123, 237, 263)-net in base 2 | [i] | ||
5 | No (123, 238, 263)-net in base 2 | [i] | ||
6 | No (123, 239, 263)-net in base 2 | [i] | ||
7 | No (123, 240, 263)-net in base 2 | [i] | ||
8 | No (123, 241, 263)-net in base 2 | [i] | ||
9 | No (123, 242, 263)-net in base 2 | [i] | ||
10 | No (123, 243, 263)-net in base 2 | [i] | ||
11 | No (123, 244, 263)-net in base 2 | [i] | ||
12 | No (123, 245, 263)-net in base 2 | [i] | ||
13 | No (123, 246, 263)-net in base 2 | [i] | ||
14 | No (123, 247, 263)-net in base 2 | [i] | ||
15 | No (123, 248, 263)-net in base 2 | [i] | ||
16 | No (123, 249, 263)-net in base 2 | [i] | ||
17 | No (123, 250, 263)-net in base 2 | [i] | ||
18 | No (123, 251, 263)-net in base 2 | [i] | ||
19 | No (123, 252, 263)-net in base 2 | [i] |