Information on Result #520970
There is no (125, 233, 270)-net in base 2, because extracting embedded orthogonal array would yield OA(2233, 270, S2, 108), but
- the linear programming bound shows that M ≥ 1 805716 963838 191291 276449 773987 529933 551024 538218 073842 142319 599295 484110 749441 196032 / 124 860938 893295 > 2233 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (125, 234, 270)-net in base 2 | [i] | m-Reduction | |
2 | No (125, 235, 270)-net in base 2 | [i] | ||
3 | No (125, 236, 270)-net in base 2 | [i] | ||
4 | No (125, 237, 270)-net in base 2 | [i] | ||
5 | No (125, 238, 270)-net in base 2 | [i] | ||
6 | No (125, 239, 270)-net in base 2 | [i] | ||
7 | No (125, 240, 270)-net in base 2 | [i] | ||
8 | No (125, 241, 270)-net in base 2 | [i] | ||
9 | No (125, 242, 270)-net in base 2 | [i] | ||
10 | No (125, 243, 270)-net in base 2 | [i] | ||
11 | No (125, 244, 270)-net in base 2 | [i] | ||
12 | No (125, 245, 270)-net in base 2 | [i] | ||
13 | No (125, 246, 270)-net in base 2 | [i] | ||
14 | No (125, 247, 270)-net in base 2 | [i] | ||
15 | No (125, 248, 270)-net in base 2 | [i] | ||
16 | No (125, 249, 270)-net in base 2 | [i] | ||
17 | No (125, 250, 270)-net in base 2 | [i] | ||
18 | No (125, 251, 270)-net in base 2 | [i] | ||
19 | No (125, 252, 270)-net in base 2 | [i] | ||
20 | No (125, 253, 270)-net in base 2 | [i] | ||
21 | No (125, 254, 270)-net in base 2 | [i] | ||
22 | No (125, 255, 270)-net in base 2 | [i] | ||
23 | No (125, 256, 270)-net in base 2 | [i] |