Information on Result #520982
There is no (127, 235, 278)-net in base 2, because extracting embedded orthogonal array would yield OA(2235, 278, S2, 108), but
- the linear programming bound shows that M ≥ 8610 120597 997849 103535 796060 969471 925725 360797 699038 214930 323792 633970 252546 589383 983104 / 113493 110947 734375 > 2235 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (127, 236, 278)-net in base 2 | [i] | m-Reduction | |
2 | No (127, 237, 278)-net in base 2 | [i] | ||
3 | No (127, 238, 278)-net in base 2 | [i] | ||
4 | No (127, 239, 278)-net in base 2 | [i] | ||
5 | No (127, 240, 278)-net in base 2 | [i] | ||
6 | No (127, 241, 278)-net in base 2 | [i] | ||
7 | No (127, 242, 278)-net in base 2 | [i] | ||
8 | No (127, 243, 278)-net in base 2 | [i] | ||
9 | No (127, 244, 278)-net in base 2 | [i] | ||
10 | No (127, 245, 278)-net in base 2 | [i] | ||
11 | No (127, 246, 278)-net in base 2 | [i] | ||
12 | No (127, 247, 278)-net in base 2 | [i] | ||
13 | No (127, 248, 278)-net in base 2 | [i] | ||
14 | No (127, 249, 278)-net in base 2 | [i] | ||
15 | No (127, 250, 278)-net in base 2 | [i] | ||
16 | No (127, 251, 278)-net in base 2 | [i] | ||
17 | No (127, 252, 278)-net in base 2 | [i] | ||
18 | No (127, 253, 278)-net in base 2 | [i] | ||
19 | No (127, 254, 278)-net in base 2 | [i] | ||
20 | No (127, 255, 278)-net in base 2 | [i] | ||
21 | No (127, 256, 278)-net in base 2 | [i] | ||
22 | No (127, 257, 278)-net in base 2 | [i] | ||
23 | No (127, 258, 278)-net in base 2 | [i] | ||
24 | No (127, 259, 278)-net in base 2 | [i] | ||
25 | No (127, 260, 278)-net in base 2 | [i] |