Information on Result #520986
There is no (128, 236, 280)-net in base 2, because extracting embedded orthogonal array would yield OA(2236, 280, S2, 108), but
- the linear programming bound shows that M ≥ 41504 278412 335844 454047 491725 650645 432186 567323 902384 277507 042637 995046 295745 131031 035904 / 340479 332843 203125 > 2236 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (128, 237, 280)-net in base 2 | [i] | m-Reduction | |
2 | No (128, 238, 280)-net in base 2 | [i] | ||
3 | No (128, 239, 280)-net in base 2 | [i] | ||
4 | No (128, 240, 280)-net in base 2 | [i] | ||
5 | No (128, 241, 280)-net in base 2 | [i] | ||
6 | No (128, 242, 280)-net in base 2 | [i] | ||
7 | No (128, 243, 280)-net in base 2 | [i] | ||
8 | No (128, 244, 280)-net in base 2 | [i] | ||
9 | No (128, 245, 280)-net in base 2 | [i] | ||
10 | No (128, 246, 280)-net in base 2 | [i] | ||
11 | No (128, 247, 280)-net in base 2 | [i] | ||
12 | No (128, 248, 280)-net in base 2 | [i] | ||
13 | No (128, 249, 280)-net in base 2 | [i] | ||
14 | No (128, 250, 280)-net in base 2 | [i] | ||
15 | No (128, 251, 280)-net in base 2 | [i] | ||
16 | No (128, 252, 280)-net in base 2 | [i] | ||
17 | No (128, 253, 280)-net in base 2 | [i] | ||
18 | No (128, 254, 280)-net in base 2 | [i] | ||
19 | No (128, 255, 280)-net in base 2 | [i] | ||
20 | No (128, 256, 280)-net in base 2 | [i] | ||
21 | No (128, 257, 280)-net in base 2 | [i] | ||
22 | No (128, 258, 280)-net in base 2 | [i] | ||
23 | No (128, 259, 280)-net in base 2 | [i] | ||
24 | No (128, 260, 280)-net in base 2 | [i] |