Information on Result #521084
There is no (11, 90, 32)-net in base 3, because extracting embedded OOA would yield OOA(390, 32, S3, 3, 79), but
- the LP bound with quadratic polynomials shows that M ≥ 177 468592 551116 819326 458415 416026 789247 509463 / 20 > 390 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (11, 91, 32)-net in base 3 | [i] | m-Reduction | |
2 | No (11, 92, 32)-net in base 3 | [i] | ||
3 | No (11, 93, 32)-net in base 3 | [i] | ||
4 | No (11, 94, 32)-net in base 3 | [i] | ||
5 | No (11, 95, 32)-net in base 3 | [i] | ||
6 | No (11, 96, 32)-net in base 3 | [i] | ||
7 | No (11, 97, 32)-net in base 3 | [i] | ||
8 | No (11, 98, 32)-net in base 3 | [i] | ||
9 | No (11, 99, 32)-net in base 3 | [i] | ||
10 | No (11, 100, 32)-net in base 3 | [i] | ||
11 | No (11, 101, 32)-net in base 3 | [i] | ||
12 | No (11, 102, 32)-net in base 3 | [i] | ||
13 | No (11, 103, 32)-net in base 3 | [i] | ||
14 | No (11, 104, 32)-net in base 3 | [i] | ||
15 | No (11, 105, 32)-net in base 3 | [i] | ||
16 | No (11, 106, 32)-net in base 3 | [i] | ||
17 | No (11, 107, 32)-net in base 3 | [i] | ||
18 | No (11, 108, 32)-net in base 3 | [i] | ||
19 | No (11, 109, 32)-net in base 3 | [i] | ||
20 | No (11, 110, 32)-net in base 3 | [i] | ||
21 | No (11, 111, 32)-net in base 3 | [i] | ||
22 | No (11, 112, 32)-net in base 3 | [i] | ||
23 | No (11, 113, 32)-net in base 3 | [i] | ||
24 | No (11, 114, 32)-net in base 3 | [i] | ||
25 | No (11, 115, 32)-net in base 3 | [i] | ||
26 | No (11, 116, 32)-net in base 3 | [i] | ||
27 | No (11, 117, 32)-net in base 3 | [i] | ||
28 | No (11, 118, 32)-net in base 3 | [i] | ||
29 | No (11, 119, 32)-net in base 3 | [i] | ||
30 | No (11, 120, 32)-net in base 3 | [i] | ||
31 | No (11, 121, 32)-net in base 3 | [i] | ||
32 | No (11, 122, 32)-net in base 3 | [i] | ||
33 | No (11, 123, 32)-net in base 3 | [i] | ||
34 | No (11, 124, 32)-net in base 3 | [i] | ||
35 | No (11, 125, 32)-net in base 3 | [i] | ||
36 | No (11, 126, 32)-net in base 3 | [i] | ||
37 | No (11, 127, 32)-net in base 3 | [i] | ||
38 | No (11, 128, 32)-net in base 3 | [i] | ||
39 | No (11, 129, 32)-net in base 3 | [i] | ||
40 | No (11, 130, 32)-net in base 3 | [i] | ||
41 | No (11, 131, 32)-net in base 3 | [i] | ||
42 | No (11, 132, 32)-net in base 3 | [i] | ||
43 | No (11, 133, 32)-net in base 3 | [i] | ||
44 | No (11, 134, 32)-net in base 3 | [i] | ||
45 | No (11, 135, 32)-net in base 3 | [i] | ||
46 | No (11, 136, 32)-net in base 3 | [i] | ||
47 | No (11, 137, 32)-net in base 3 | [i] | ||
48 | No (11, 138, 32)-net in base 3 | [i] | ||
49 | No (11, 139, 32)-net in base 3 | [i] | ||
50 | No (11, 140, 32)-net in base 3 | [i] | ||
51 | No (11, 141, 32)-net in base 3 | [i] | ||
52 | No (11, 142, 32)-net in base 3 | [i] | ||
53 | No (11, 143, 32)-net in base 3 | [i] | ||
54 | No (11, 144, 32)-net in base 3 | [i] | ||
55 | No (11, 145, 32)-net in base 3 | [i] | ||
56 | No (11, 146, 32)-net in base 3 | [i] | ||
57 | No (11, 147, 32)-net in base 3 | [i] | ||
58 | No (11, 148, 32)-net in base 3 | [i] | ||
59 | No (11, 149, 32)-net in base 3 | [i] | ||
60 | No (11, 150, 32)-net in base 3 | [i] | ||
61 | No (11, 151, 32)-net in base 3 | [i] | ||
62 | No (11, 152, 32)-net in base 3 | [i] | ||
63 | No (11, 153, 32)-net in base 3 | [i] | ||
64 | No (11, 154, 32)-net in base 3 | [i] | ||
65 | No (11, 155, 32)-net in base 3 | [i] | ||
66 | No (11, 156, 32)-net in base 3 | [i] | ||
67 | No (11, 157, 32)-net in base 3 | [i] | ||
68 | No (11, 158, 32)-net in base 3 | [i] | ||
69 | No (11, 159, 32)-net in base 3 | [i] | ||
70 | No (11, 160, 32)-net in base 3 | [i] | ||
71 | No (11, 161, 32)-net in base 3 | [i] | ||
72 | No (11, 162, 32)-net in base 3 | [i] | ||
73 | No (11, 163, 32)-net in base 3 | [i] | ||
74 | No (11, 164, 32)-net in base 3 | [i] | ||
75 | No (11, 165, 32)-net in base 3 | [i] | ||
76 | No (11, 166, 32)-net in base 3 | [i] | ||
77 | No (11, 167, 32)-net in base 3 | [i] | ||
78 | No (11, 168, 32)-net in base 3 | [i] | ||
79 | No (11, 169, 32)-net in base 3 | [i] | ||
80 | No (11, 170, 32)-net in base 3 | [i] | ||
81 | No (11, 171, 32)-net in base 3 | [i] | ||
82 | No (11, 172, 32)-net in base 3 | [i] | ||
83 | No (11, 173, 32)-net in base 3 | [i] | ||
84 | No (11, 174, 32)-net in base 3 | [i] | ||
85 | No (11, 175, 32)-net in base 3 | [i] | ||
86 | No (11, 176, 32)-net in base 3 | [i] | ||
87 | No (11, 177, 32)-net in base 3 | [i] | ||
88 | No (11, 178, 32)-net in base 3 | [i] | ||
89 | No (11, 179, 32)-net in base 3 | [i] | ||
90 | No (11, 180, 32)-net in base 3 | [i] | ||
91 | No (11, 181, 32)-net in base 3 | [i] | ||
92 | No (11, 182, 32)-net in base 3 | [i] | ||
93 | No (11, 183, 32)-net in base 3 | [i] | ||
94 | No (11, 184, 32)-net in base 3 | [i] | ||
95 | No (11, 185, 32)-net in base 3 | [i] | ||
96 | No (11, 186, 32)-net in base 3 | [i] | ||
97 | No (11, 187, 32)-net in base 3 | [i] | ||
98 | No (11, 188, 32)-net in base 3 | [i] | ||
99 | No (11, 189, 32)-net in base 3 | [i] | ||
100 | No (11, 190, 32)-net in base 3 | [i] | ||
101 | No (11, 191, 32)-net in base 3 | [i] | ||
102 | No (11, 192, 32)-net in base 3 | [i] | ||
103 | No (11, 193, 32)-net in base 3 | [i] | ||
104 | No (11, 194, 32)-net in base 3 | [i] | ||
105 | No (11, 195, 32)-net in base 3 | [i] | ||
106 | No (11, 196, 32)-net in base 3 | [i] | ||
107 | No (11, 197, 32)-net in base 3 | [i] | ||
108 | No (11, 198, 32)-net in base 3 | [i] | ||
109 | No (11, 199, 32)-net in base 3 | [i] | ||
110 | No (11, 200, 32)-net in base 3 | [i] | ||
111 | No (11, 201, 32)-net in base 3 | [i] | ||
112 | No (11, 202, 32)-net in base 3 | [i] | ||
113 | No (11, 203, 32)-net in base 3 | [i] | ||
114 | No (11, 204, 32)-net in base 3 | [i] | ||
115 | No (11, 205, 32)-net in base 3 | [i] | ||
116 | No (11, 206, 32)-net in base 3 | [i] | ||
117 | No (11, 207, 32)-net in base 3 | [i] | ||
118 | No (11, 208, 32)-net in base 3 | [i] | ||
119 | No (11, 209, 32)-net in base 3 | [i] | ||
120 | No (11, 210, 32)-net in base 3 | [i] | ||
121 | No (11, 211, 32)-net in base 3 | [i] | ||
122 | No (11, 212, 32)-net in base 3 | [i] | ||
123 | No (11, 213, 32)-net in base 3 | [i] | ||
124 | No (11, 214, 32)-net in base 3 | [i] | ||
125 | No (11, 215, 32)-net in base 3 | [i] | ||
126 | No (11, 216, 32)-net in base 3 | [i] | ||
127 | No (11, 217, 32)-net in base 3 | [i] | ||
128 | No (11, 218, 32)-net in base 3 | [i] | ||
129 | No (11, 219, 32)-net in base 3 | [i] | ||
130 | No (11, 220, 32)-net in base 3 | [i] | ||
131 | No (11, 221, 32)-net in base 3 | [i] | ||
132 | No (11, 222, 32)-net in base 3 | [i] | ||
133 | No (11, 223, 32)-net in base 3 | [i] | ||
134 | No (11, 224, 32)-net in base 3 | [i] | ||
135 | No (11, 225, 32)-net in base 3 | [i] | ||
136 | No (11, 226, 32)-net in base 3 | [i] | ||
137 | No (11, 227, 32)-net in base 3 | [i] | ||
138 | No (11, 228, 32)-net in base 3 | [i] | ||
139 | No (11, 229, 32)-net in base 3 | [i] | ||
140 | No (11, 230, 32)-net in base 3 | [i] | ||
141 | No (11, 231, 32)-net in base 3 | [i] | ||
142 | No (11, 232, 32)-net in base 3 | [i] | ||
143 | No (11, 233, 32)-net in base 3 | [i] | ||
144 | No (11, 234, 32)-net in base 3 | [i] | ||
145 | No (11, 235, 32)-net in base 3 | [i] | ||
146 | No (11, 236, 32)-net in base 3 | [i] | ||
147 | No (11, 237, 32)-net in base 3 | [i] | ||
148 | No (11, 238, 32)-net in base 3 | [i] | ||
149 | No (11, 239, 32)-net in base 3 | [i] | ||
150 | No (11, 240, 32)-net in base 3 | [i] | ||
151 | No (11, 241, 32)-net in base 3 | [i] | ||
152 | No (11, 242, 32)-net in base 3 | [i] | ||
153 | No (11, 243, 32)-net in base 3 | [i] | ||
154 | No (11, 244, 32)-net in base 3 | [i] | ||
155 | No (11, 245, 32)-net in base 3 | [i] | ||
156 | No (11, 246, 32)-net in base 3 | [i] | ||
157 | No (11, 247, 32)-net in base 3 | [i] | ||
158 | No (11, 248, 32)-net in base 3 | [i] | ||
159 | No (11, 249, 32)-net in base 3 | [i] | ||
160 | No (11, 250, 32)-net in base 3 | [i] | ||
161 | No (11, m, 32)-net in base 3 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |