Information on Result #521093
There is no (12, 97, 34)-net in base 3, because extracting embedded OOA would yield OOA(397, 34, S3, 3, 85), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 858962 534553 352218 394101 882942 702121 170179 203335 / 43 > 397 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (12, 98, 34)-net in base 3 | [i] | m-Reduction | |
2 | No (12, 99, 34)-net in base 3 | [i] | ||
3 | No (12, 100, 34)-net in base 3 | [i] | ||
4 | No (12, 101, 34)-net in base 3 | [i] | ||
5 | No (12, 102, 34)-net in base 3 | [i] | ||
6 | No (12, 103, 34)-net in base 3 | [i] | ||
7 | No (12, 104, 34)-net in base 3 | [i] | ||
8 | No (12, 105, 34)-net in base 3 | [i] | ||
9 | No (12, 106, 34)-net in base 3 | [i] | ||
10 | No (12, 107, 34)-net in base 3 | [i] | ||
11 | No (12, 108, 34)-net in base 3 | [i] | ||
12 | No (12, 109, 34)-net in base 3 | [i] | ||
13 | No (12, 110, 34)-net in base 3 | [i] | ||
14 | No (12, 111, 34)-net in base 3 | [i] | ||
15 | No (12, 112, 34)-net in base 3 | [i] | ||
16 | No (12, 113, 34)-net in base 3 | [i] | ||
17 | No (12, 114, 34)-net in base 3 | [i] | ||
18 | No (12, 115, 34)-net in base 3 | [i] | ||
19 | No (12, 116, 34)-net in base 3 | [i] | ||
20 | No (12, 117, 34)-net in base 3 | [i] | ||
21 | No (12, 118, 34)-net in base 3 | [i] | ||
22 | No (12, 119, 34)-net in base 3 | [i] | ||
23 | No (12, 120, 34)-net in base 3 | [i] | ||
24 | No (12, 121, 34)-net in base 3 | [i] | ||
25 | No (12, 122, 34)-net in base 3 | [i] | ||
26 | No (12, 123, 34)-net in base 3 | [i] | ||
27 | No (12, 124, 34)-net in base 3 | [i] | ||
28 | No (12, 125, 34)-net in base 3 | [i] | ||
29 | No (12, 126, 34)-net in base 3 | [i] | ||
30 | No (12, 127, 34)-net in base 3 | [i] | ||
31 | No (12, 128, 34)-net in base 3 | [i] | ||
32 | No (12, 129, 34)-net in base 3 | [i] | ||
33 | No (12, 130, 34)-net in base 3 | [i] | ||
34 | No (12, 131, 34)-net in base 3 | [i] | ||
35 | No (12, 132, 34)-net in base 3 | [i] | ||
36 | No (12, 133, 34)-net in base 3 | [i] | ||
37 | No (12, 134, 34)-net in base 3 | [i] | ||
38 | No (12, 135, 34)-net in base 3 | [i] | ||
39 | No (12, 136, 34)-net in base 3 | [i] | ||
40 | No (12, 137, 34)-net in base 3 | [i] | ||
41 | No (12, 138, 34)-net in base 3 | [i] | ||
42 | No (12, 139, 34)-net in base 3 | [i] | ||
43 | No (12, 140, 34)-net in base 3 | [i] | ||
44 | No (12, 141, 34)-net in base 3 | [i] | ||
45 | No (12, 142, 34)-net in base 3 | [i] | ||
46 | No (12, 143, 34)-net in base 3 | [i] | ||
47 | No (12, 144, 34)-net in base 3 | [i] | ||
48 | No (12, 145, 34)-net in base 3 | [i] | ||
49 | No (12, 146, 34)-net in base 3 | [i] | ||
50 | No (12, 147, 34)-net in base 3 | [i] | ||
51 | No (12, 148, 34)-net in base 3 | [i] | ||
52 | No (12, 149, 34)-net in base 3 | [i] | ||
53 | No (12, 150, 34)-net in base 3 | [i] | ||
54 | No (12, 151, 34)-net in base 3 | [i] | ||
55 | No (12, 152, 34)-net in base 3 | [i] | ||
56 | No (12, 153, 34)-net in base 3 | [i] | ||
57 | No (12, 154, 34)-net in base 3 | [i] | ||
58 | No (12, 155, 34)-net in base 3 | [i] | ||
59 | No (12, 156, 34)-net in base 3 | [i] | ||
60 | No (12, 157, 34)-net in base 3 | [i] | ||
61 | No (12, 158, 34)-net in base 3 | [i] | ||
62 | No (12, 159, 34)-net in base 3 | [i] | ||
63 | No (12, 160, 34)-net in base 3 | [i] | ||
64 | No (12, 161, 34)-net in base 3 | [i] | ||
65 | No (12, 162, 34)-net in base 3 | [i] | ||
66 | No (12, 163, 34)-net in base 3 | [i] | ||
67 | No (12, 164, 34)-net in base 3 | [i] | ||
68 | No (12, 165, 34)-net in base 3 | [i] | ||
69 | No (12, 166, 34)-net in base 3 | [i] | ||
70 | No (12, 167, 34)-net in base 3 | [i] | ||
71 | No (12, 168, 34)-net in base 3 | [i] | ||
72 | No (12, 169, 34)-net in base 3 | [i] | ||
73 | No (12, 170, 34)-net in base 3 | [i] | ||
74 | No (12, 171, 34)-net in base 3 | [i] | ||
75 | No (12, 172, 34)-net in base 3 | [i] | ||
76 | No (12, 173, 34)-net in base 3 | [i] | ||
77 | No (12, 174, 34)-net in base 3 | [i] | ||
78 | No (12, 175, 34)-net in base 3 | [i] | ||
79 | No (12, 176, 34)-net in base 3 | [i] | ||
80 | No (12, 177, 34)-net in base 3 | [i] | ||
81 | No (12, 178, 34)-net in base 3 | [i] | ||
82 | No (12, 179, 34)-net in base 3 | [i] | ||
83 | No (12, 180, 34)-net in base 3 | [i] | ||
84 | No (12, 181, 34)-net in base 3 | [i] | ||
85 | No (12, 182, 34)-net in base 3 | [i] | ||
86 | No (12, 183, 34)-net in base 3 | [i] | ||
87 | No (12, 184, 34)-net in base 3 | [i] | ||
88 | No (12, 185, 34)-net in base 3 | [i] | ||
89 | No (12, 186, 34)-net in base 3 | [i] | ||
90 | No (12, 187, 34)-net in base 3 | [i] | ||
91 | No (12, 188, 34)-net in base 3 | [i] | ||
92 | No (12, 189, 34)-net in base 3 | [i] | ||
93 | No (12, 190, 34)-net in base 3 | [i] | ||
94 | No (12, 191, 34)-net in base 3 | [i] | ||
95 | No (12, 192, 34)-net in base 3 | [i] | ||
96 | No (12, 193, 34)-net in base 3 | [i] | ||
97 | No (12, 194, 34)-net in base 3 | [i] | ||
98 | No (12, 195, 34)-net in base 3 | [i] | ||
99 | No (12, 196, 34)-net in base 3 | [i] | ||
100 | No (12, 197, 34)-net in base 3 | [i] | ||
101 | No (12, 198, 34)-net in base 3 | [i] | ||
102 | No (12, 199, 34)-net in base 3 | [i] | ||
103 | No (12, 200, 34)-net in base 3 | [i] | ||
104 | No (12, 201, 34)-net in base 3 | [i] | ||
105 | No (12, 202, 34)-net in base 3 | [i] | ||
106 | No (12, 203, 34)-net in base 3 | [i] | ||
107 | No (12, 204, 34)-net in base 3 | [i] | ||
108 | No (12, 205, 34)-net in base 3 | [i] | ||
109 | No (12, 206, 34)-net in base 3 | [i] | ||
110 | No (12, 207, 34)-net in base 3 | [i] | ||
111 | No (12, 208, 34)-net in base 3 | [i] | ||
112 | No (12, 209, 34)-net in base 3 | [i] | ||
113 | No (12, 210, 34)-net in base 3 | [i] | ||
114 | No (12, 211, 34)-net in base 3 | [i] | ||
115 | No (12, 212, 34)-net in base 3 | [i] | ||
116 | No (12, 213, 34)-net in base 3 | [i] | ||
117 | No (12, 214, 34)-net in base 3 | [i] | ||
118 | No (12, 215, 34)-net in base 3 | [i] | ||
119 | No (12, 216, 34)-net in base 3 | [i] | ||
120 | No (12, 217, 34)-net in base 3 | [i] | ||
121 | No (12, 218, 34)-net in base 3 | [i] | ||
122 | No (12, 219, 34)-net in base 3 | [i] | ||
123 | No (12, 220, 34)-net in base 3 | [i] | ||
124 | No (12, 221, 34)-net in base 3 | [i] | ||
125 | No (12, 222, 34)-net in base 3 | [i] | ||
126 | No (12, 223, 34)-net in base 3 | [i] | ||
127 | No (12, 224, 34)-net in base 3 | [i] | ||
128 | No (12, 225, 34)-net in base 3 | [i] | ||
129 | No (12, 226, 34)-net in base 3 | [i] | ||
130 | No (12, 227, 34)-net in base 3 | [i] | ||
131 | No (12, 228, 34)-net in base 3 | [i] | ||
132 | No (12, 229, 34)-net in base 3 | [i] | ||
133 | No (12, 230, 34)-net in base 3 | [i] | ||
134 | No (12, 231, 34)-net in base 3 | [i] | ||
135 | No (12, 232, 34)-net in base 3 | [i] | ||
136 | No (12, 233, 34)-net in base 3 | [i] | ||
137 | No (12, 234, 34)-net in base 3 | [i] | ||
138 | No (12, 235, 34)-net in base 3 | [i] | ||
139 | No (12, 236, 34)-net in base 3 | [i] | ||
140 | No (12, 237, 34)-net in base 3 | [i] | ||
141 | No (12, 238, 34)-net in base 3 | [i] | ||
142 | No (12, 239, 34)-net in base 3 | [i] | ||
143 | No (12, 240, 34)-net in base 3 | [i] | ||
144 | No (12, 241, 34)-net in base 3 | [i] | ||
145 | No (12, 242, 34)-net in base 3 | [i] | ||
146 | No (12, 243, 34)-net in base 3 | [i] | ||
147 | No (12, 244, 34)-net in base 3 | [i] | ||
148 | No (12, 245, 34)-net in base 3 | [i] | ||
149 | No (12, 246, 34)-net in base 3 | [i] | ||
150 | No (12, 247, 34)-net in base 3 | [i] | ||
151 | No (12, 248, 34)-net in base 3 | [i] | ||
152 | No (12, 249, 34)-net in base 3 | [i] | ||
153 | No (12, 250, 34)-net in base 3 | [i] | ||
154 | No (12, m, 34)-net in base 3 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |