Information on Result #521829
There is no (9, 110, 38)-net in base 4, because extracting embedded OOA would yield OOA(4110, 38, S4, 3, 101), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 33 699933 333938 299743 333768 858774 538342 046430 528175 715601 379512 811520 / 17 > 4110 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (9, 111, 38)-net in base 4 | [i] | m-Reduction | |
2 | No (9, 112, 38)-net in base 4 | [i] | ||
3 | No (9, 113, 38)-net in base 4 | [i] | ||
4 | No (9, 114, 38)-net in base 4 | [i] | ||
5 | No (9, 115, 38)-net in base 4 | [i] | ||
6 | No (9, 116, 38)-net in base 4 | [i] | ||
7 | No (9, 117, 38)-net in base 4 | [i] | ||
8 | No (9, 118, 38)-net in base 4 | [i] | ||
9 | No (9, 119, 38)-net in base 4 | [i] | ||
10 | No (9, 120, 38)-net in base 4 | [i] | ||
11 | No (9, 121, 38)-net in base 4 | [i] | ||
12 | No (9, 122, 38)-net in base 4 | [i] | ||
13 | No (9, 123, 38)-net in base 4 | [i] | ||
14 | No (9, 124, 38)-net in base 4 | [i] | ||
15 | No (9, 125, 38)-net in base 4 | [i] | ||
16 | No (9, 126, 38)-net in base 4 | [i] | ||
17 | No (9, 127, 38)-net in base 4 | [i] | ||
18 | No (9, 128, 38)-net in base 4 | [i] | ||
19 | No (9, 129, 38)-net in base 4 | [i] | ||
20 | No (9, 130, 38)-net in base 4 | [i] | ||
21 | No (9, 131, 38)-net in base 4 | [i] | ||
22 | No (9, 132, 38)-net in base 4 | [i] | ||
23 | No (9, 133, 38)-net in base 4 | [i] | ||
24 | No (9, 134, 38)-net in base 4 | [i] | ||
25 | No (9, 135, 38)-net in base 4 | [i] | ||
26 | No (9, 136, 38)-net in base 4 | [i] | ||
27 | No (9, 137, 38)-net in base 4 | [i] | ||
28 | No (9, 138, 38)-net in base 4 | [i] | ||
29 | No (9, 139, 38)-net in base 4 | [i] | ||
30 | No (9, 140, 38)-net in base 4 | [i] | ||
31 | No (9, 141, 38)-net in base 4 | [i] | ||
32 | No (9, 142, 38)-net in base 4 | [i] | ||
33 | No (9, 143, 38)-net in base 4 | [i] | ||
34 | No (9, 144, 38)-net in base 4 | [i] | ||
35 | No (9, 145, 38)-net in base 4 | [i] | ||
36 | No (9, 146, 38)-net in base 4 | [i] | ||
37 | No (9, 147, 38)-net in base 4 | [i] | ||
38 | No (9, 148, 38)-net in base 4 | [i] | ||
39 | No (9, 149, 38)-net in base 4 | [i] | ||
40 | No (9, 150, 38)-net in base 4 | [i] | ||
41 | No (9, 151, 38)-net in base 4 | [i] | ||
42 | No (9, 152, 38)-net in base 4 | [i] | ||
43 | No (9, 153, 38)-net in base 4 | [i] | ||
44 | No (9, 154, 38)-net in base 4 | [i] | ||
45 | No (9, 155, 38)-net in base 4 | [i] | ||
46 | No (9, 156, 38)-net in base 4 | [i] | ||
47 | No (9, 157, 38)-net in base 4 | [i] | ||
48 | No (9, 158, 38)-net in base 4 | [i] | ||
49 | No (9, 159, 38)-net in base 4 | [i] | ||
50 | No (9, 160, 38)-net in base 4 | [i] | ||
51 | No (9, 161, 38)-net in base 4 | [i] | ||
52 | No (9, 162, 38)-net in base 4 | [i] | ||
53 | No (9, 163, 38)-net in base 4 | [i] | ||
54 | No (9, 164, 38)-net in base 4 | [i] | ||
55 | No (9, 165, 38)-net in base 4 | [i] | ||
56 | No (9, 166, 38)-net in base 4 | [i] | ||
57 | No (9, 167, 38)-net in base 4 | [i] | ||
58 | No (9, 168, 38)-net in base 4 | [i] | ||
59 | No (9, 169, 38)-net in base 4 | [i] | ||
60 | No (9, 170, 38)-net in base 4 | [i] | ||
61 | No (9, 171, 38)-net in base 4 | [i] | ||
62 | No (9, 172, 38)-net in base 4 | [i] | ||
63 | No (9, 173, 38)-net in base 4 | [i] | ||
64 | No (9, 174, 38)-net in base 4 | [i] | ||
65 | No (9, 175, 38)-net in base 4 | [i] | ||
66 | No (9, 176, 38)-net in base 4 | [i] | ||
67 | No (9, 177, 38)-net in base 4 | [i] | ||
68 | No (9, 178, 38)-net in base 4 | [i] | ||
69 | No (9, 179, 38)-net in base 4 | [i] | ||
70 | No (9, 180, 38)-net in base 4 | [i] | ||
71 | No (9, 181, 38)-net in base 4 | [i] | ||
72 | No (9, 182, 38)-net in base 4 | [i] | ||
73 | No (9, 183, 38)-net in base 4 | [i] | ||
74 | No (9, 184, 38)-net in base 4 | [i] | ||
75 | No (9, 185, 38)-net in base 4 | [i] | ||
76 | No (9, 186, 38)-net in base 4 | [i] | ||
77 | No (9, 187, 38)-net in base 4 | [i] | ||
78 | No (9, 188, 38)-net in base 4 | [i] | ||
79 | No (9, 189, 38)-net in base 4 | [i] | ||
80 | No (9, 190, 38)-net in base 4 | [i] | ||
81 | No (9, 191, 38)-net in base 4 | [i] | ||
82 | No (9, 192, 38)-net in base 4 | [i] | ||
83 | No (9, 193, 38)-net in base 4 | [i] | ||
84 | No (9, 194, 38)-net in base 4 | [i] | ||
85 | No (9, 195, 38)-net in base 4 | [i] | ||
86 | No (9, 196, 38)-net in base 4 | [i] | ||
87 | No (9, 197, 38)-net in base 4 | [i] | ||
88 | No (9, 198, 38)-net in base 4 | [i] | ||
89 | No (9, 199, 38)-net in base 4 | [i] | ||
90 | No (9, 200, 38)-net in base 4 | [i] | ||
91 | No (9, 201, 38)-net in base 4 | [i] | ||
92 | No (9, 202, 38)-net in base 4 | [i] | ||
93 | No (9, 203, 38)-net in base 4 | [i] | ||
94 | No (9, 204, 38)-net in base 4 | [i] | ||
95 | No (9, 205, 38)-net in base 4 | [i] | ||
96 | No (9, 206, 38)-net in base 4 | [i] | ||
97 | No (9, 207, 38)-net in base 4 | [i] | ||
98 | No (9, 208, 38)-net in base 4 | [i] | ||
99 | No (9, 209, 38)-net in base 4 | [i] | ||
100 | No (9, 210, 38)-net in base 4 | [i] | ||
101 | No (9, 211, 38)-net in base 4 | [i] | ||
102 | No (9, 212, 38)-net in base 4 | [i] | ||
103 | No (9, 213, 38)-net in base 4 | [i] | ||
104 | No (9, 214, 38)-net in base 4 | [i] | ||
105 | No (9, 215, 38)-net in base 4 | [i] | ||
106 | No (9, 216, 38)-net in base 4 | [i] | ||
107 | No (9, 217, 38)-net in base 4 | [i] | ||
108 | No (9, 218, 38)-net in base 4 | [i] | ||
109 | No (9, 219, 38)-net in base 4 | [i] | ||
110 | No (9, 220, 38)-net in base 4 | [i] | ||
111 | No (9, 221, 38)-net in base 4 | [i] | ||
112 | No (9, 222, 38)-net in base 4 | [i] | ||
113 | No (9, 223, 38)-net in base 4 | [i] | ||
114 | No (9, 224, 38)-net in base 4 | [i] | ||
115 | No (9, 225, 38)-net in base 4 | [i] | ||
116 | No (9, 226, 38)-net in base 4 | [i] | ||
117 | No (9, 227, 38)-net in base 4 | [i] | ||
118 | No (9, 228, 38)-net in base 4 | [i] | ||
119 | No (9, 229, 38)-net in base 4 | [i] | ||
120 | No (9, 230, 38)-net in base 4 | [i] | ||
121 | No (9, 231, 38)-net in base 4 | [i] | ||
122 | No (9, 232, 38)-net in base 4 | [i] | ||
123 | No (9, 233, 38)-net in base 4 | [i] | ||
124 | No (9, 234, 38)-net in base 4 | [i] | ||
125 | No (9, 235, 38)-net in base 4 | [i] | ||
126 | No (9, 236, 38)-net in base 4 | [i] | ||
127 | No (9, 237, 38)-net in base 4 | [i] | ||
128 | No (9, 238, 38)-net in base 4 | [i] | ||
129 | No (9, 239, 38)-net in base 4 | [i] | ||
130 | No (9, 240, 38)-net in base 4 | [i] | ||
131 | No (9, 241, 38)-net in base 4 | [i] | ||
132 | No (9, 242, 38)-net in base 4 | [i] | ||
133 | No (9, 243, 38)-net in base 4 | [i] | ||
134 | No (9, 244, 38)-net in base 4 | [i] | ||
135 | No (9, 245, 38)-net in base 4 | [i] | ||
136 | No (9, 246, 38)-net in base 4 | [i] | ||
137 | No (9, 247, 38)-net in base 4 | [i] | ||
138 | No (9, 248, 38)-net in base 4 | [i] | ||
139 | No (9, 249, 38)-net in base 4 | [i] | ||
140 | No (9, 250, 38)-net in base 4 | [i] | ||
141 | No (9, 251, 38)-net in base 4 | [i] | ||
142 | No (9, 252, 38)-net in base 4 | [i] | ||
143 | No (9, 253, 38)-net in base 4 | [i] | ||
144 | No (9, 254, 38)-net in base 4 | [i] | ||
145 | No (9, 255, 38)-net in base 4 | [i] | ||
146 | No (9, 256, 38)-net in base 4 | [i] | ||
147 | No (9, 257, 38)-net in base 4 | [i] | ||
148 | No (9, 258, 38)-net in base 4 | [i] | ||
149 | No (9, 259, 38)-net in base 4 | [i] | ||
150 | No (9, 260, 38)-net in base 4 | [i] | ||
151 | No (9, m, 38)-net in base 4 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |