Information on Result #523452
There is no (16, 114, 130)-net in base 8, because extracting embedded orthogonal array would yield OA(8114, 130, S8, 98), but
- the linear programming bound shows that M ≥ 35521 613223 977817 808600 584786 921883 743646 382533 111114 232182 834553 852288 928742 958552 390470 329316 634829 110683 210776 313856 / 3847 120524 212625 > 8114 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (16, 115, 130)-net in base 8 | [i] | m-Reduction | |
2 | No (16, 116, 130)-net in base 8 | [i] | ||
3 | No (16, 117, 130)-net in base 8 | [i] | ||
4 | No (16, 118, 130)-net in base 8 | [i] | ||
5 | No (16, 119, 130)-net in base 8 | [i] | ||
6 | No (16, 120, 130)-net in base 8 | [i] | ||
7 | No (16, 121, 130)-net in base 8 | [i] | ||
8 | No (16, 122, 130)-net in base 8 | [i] | ||
9 | No (16, 123, 130)-net in base 8 | [i] | ||
10 | No (16, 124, 130)-net in base 8 | [i] | ||
11 | No (16, 125, 130)-net in base 8 | [i] | ||
12 | No (16, 126, 130)-net in base 8 | [i] | ||
13 | No (16, 127, 130)-net in base 8 | [i] | ||
14 | No (16, 128, 130)-net in base 8 | [i] | ||
15 | No (16, 129, 130)-net in base 8 | [i] | ||
16 | No (16, 130, 130)-net in base 8 | [i] | ||
17 | No (16, 131, 130)-net in base 8 | [i] | ||
18 | No (16, 132, 130)-net in base 8 | [i] | ||
19 | No (16, 133, 130)-net in base 8 | [i] | ||
20 | No (16, 134, 130)-net in base 8 | [i] | ||
21 | No (16, 135, 130)-net in base 8 | [i] | ||
22 | No (16, 136, 130)-net in base 8 | [i] | ||
23 | No (16, 137, 130)-net in base 8 | [i] | ||
24 | No (16, 138, 130)-net in base 8 | [i] | ||
25 | No (16, 139, 130)-net in base 8 | [i] | ||
26 | No (16, 140, 130)-net in base 8 | [i] | ||
27 | No (16, 141, 130)-net in base 8 | [i] | ||
28 | No (16, 142, 130)-net in base 8 | [i] | ||
29 | No (16, 143, 130)-net in base 8 | [i] | ||
30 | No (16, 144, 130)-net in base 8 | [i] | ||
31 | No (16, 145, 130)-net in base 8 | [i] | ||
32 | No (16, 146, 130)-net in base 8 | [i] | ||
33 | No (16, 147, 130)-net in base 8 | [i] | ||
34 | No (16, 148, 130)-net in base 8 | [i] | ||
35 | No (16, 149, 130)-net in base 8 | [i] | ||
36 | No (16, 150, 130)-net in base 8 | [i] | ||
37 | No (16, 151, 130)-net in base 8 | [i] | ||
38 | No (16, 152, 130)-net in base 8 | [i] | ||
39 | No (16, 153, 130)-net in base 8 | [i] | ||
40 | No (16, 154, 130)-net in base 8 | [i] | ||
41 | No (16, 155, 130)-net in base 8 | [i] | ||
42 | No (16, 156, 130)-net in base 8 | [i] | ||
43 | No (16, 157, 130)-net in base 8 | [i] | ||
44 | No (16, 158, 130)-net in base 8 | [i] | ||
45 | No (16, 159, 130)-net in base 8 | [i] | ||
46 | No (16, 160, 130)-net in base 8 | [i] | ||
47 | No (16, 161, 130)-net in base 8 | [i] | ||
48 | No (16, 162, 130)-net in base 8 | [i] | ||
49 | No (16, 163, 130)-net in base 8 | [i] | ||
50 | No (16, 164, 130)-net in base 8 | [i] | ||
51 | No (16, 165, 130)-net in base 8 | [i] | ||
52 | No (16, 166, 130)-net in base 8 | [i] | ||
53 | No (16, 167, 130)-net in base 8 | [i] | ||
54 | No (16, 168, 130)-net in base 8 | [i] | ||
55 | No (16, 169, 130)-net in base 8 | [i] | ||
56 | No (16, 170, 130)-net in base 8 | [i] | ||
57 | No (16, 171, 130)-net in base 8 | [i] | ||
58 | No (16, 172, 130)-net in base 8 | [i] | ||
59 | No (16, 173, 130)-net in base 8 | [i] | ||
60 | No (16, m, 130)-net in base 8 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |