Information on Result #546389

There is no linear OA(2189, 239, F2, 90) (dual of [239, 50, 91]-code), because residual code would yield OA(299, 148, S2, 45), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(2190, 240, F2, 91) (dual of [240, 50, 92]-code) [i]Truncation
2No linear OOA(2190, 239, F2, 2, 91) (dual of [(239, 2), 288, 92]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(2189, 239, F2, 2, 90) (dual of [(239, 2), 289, 91]-NRT-code) [i]Depth Reduction
4No linear OOA(2189, 239, F2, 3, 90) (dual of [(239, 3), 528, 91]-NRT-code) [i]
5No linear OOA(2189, 239, F2, 4, 90) (dual of [(239, 4), 767, 91]-NRT-code) [i]
6No linear OOA(2189, 239, F2, 5, 90) (dual of [(239, 5), 1006, 91]-NRT-code) [i]
7No linear OOA(2189, 239, F2, 6, 90) (dual of [(239, 6), 1245, 91]-NRT-code) [i]
8No linear OOA(2189, 239, F2, 7, 90) (dual of [(239, 7), 1484, 91]-NRT-code) [i]
9No linear OOA(2189, 239, F2, 8, 90) (dual of [(239, 8), 1723, 91]-NRT-code) [i]
10No digital (99, 189, 239)-net over F2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2190, 269, F2, 90) (dual of [269, 79, 91]-code) [i]Construction Y1 (Bound)