Information on Result #546413
There is no linear OA(2191, 214, F2, 94) (dual of [214, 23, 95]-code), because residual code would yield OA(297, 119, S2, 47), but
- 1 times truncation [i] would yield OA(296, 118, S2, 46), but
- the linear programming bound shows that M ≥ 3649 328393 569529 653896 227896 426496 / 35409 > 296 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2192, 215, F2, 95) (dual of [215, 23, 96]-code) | [i] | Truncation | |
2 | No linear OOA(2192, 214, F2, 2, 95) (dual of [(214, 2), 236, 96]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2191, 214, F2, 2, 94) (dual of [(214, 2), 237, 95]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2191, 214, F2, 3, 94) (dual of [(214, 3), 451, 95]-NRT-code) | [i] | ||
5 | No linear OOA(2191, 214, F2, 4, 94) (dual of [(214, 4), 665, 95]-NRT-code) | [i] | ||
6 | No linear OOA(2191, 214, F2, 5, 94) (dual of [(214, 5), 879, 95]-NRT-code) | [i] | ||
7 | No linear OOA(2191, 214, F2, 6, 94) (dual of [(214, 6), 1093, 95]-NRT-code) | [i] | ||
8 | No linear OOA(2191, 214, F2, 7, 94) (dual of [(214, 7), 1307, 95]-NRT-code) | [i] | ||
9 | No linear OOA(2191, 214, F2, 8, 94) (dual of [(214, 8), 1521, 95]-NRT-code) | [i] | ||
10 | No digital (97, 191, 214)-net over F2 | [i] | Extracting Embedded Orthogonal Array |