Information on Result #546440
There is no linear OA(2202, 234, F2, 98) (dual of [234, 32, 99]-code), because residual code would yield OA(2104, 135, S2, 49), but
- 1 times truncation [i] would yield OA(2103, 134, S2, 48), but
- the linear programming bound shows that M ≥ 14817 140394 002966 911489 108655 371959 926784 / 1391 278625 > 2103 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2203, 235, F2, 99) (dual of [235, 32, 100]-code) | [i] | Truncation | |
2 | No linear OOA(2203, 234, F2, 2, 99) (dual of [(234, 2), 265, 100]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2202, 234, F2, 2, 98) (dual of [(234, 2), 266, 99]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2202, 234, F2, 3, 98) (dual of [(234, 3), 500, 99]-NRT-code) | [i] | ||
5 | No linear OOA(2202, 234, F2, 4, 98) (dual of [(234, 4), 734, 99]-NRT-code) | [i] | ||
6 | No linear OOA(2202, 234, F2, 5, 98) (dual of [(234, 5), 968, 99]-NRT-code) | [i] | ||
7 | No linear OOA(2202, 234, F2, 6, 98) (dual of [(234, 6), 1202, 99]-NRT-code) | [i] | ||
8 | No linear OOA(2202, 234, F2, 7, 98) (dual of [(234, 7), 1436, 99]-NRT-code) | [i] | ||
9 | No linear OOA(2202, 234, F2, 8, 98) (dual of [(234, 8), 1670, 99]-NRT-code) | [i] | ||
10 | No digital (104, 202, 234)-net over F2 | [i] | Extracting Embedded Orthogonal Array |