Information on Result #546526
There is no linear OA(2249, 273, F2, 122) (dual of [273, 24, 123]-code), because residual code would yield OA(2127, 150, S2, 61), but
- 1 times truncation [i] would yield OA(2126, 149, S2, 60), but
- the linear programming bound shows that M ≥ 40 354766 457887 934259 048521 444548 255732 989952 / 438495 > 2126 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2250, 274, F2, 123) (dual of [274, 24, 124]-code) | [i] | Truncation | |
2 | No linear OOA(2250, 273, F2, 2, 123) (dual of [(273, 2), 296, 124]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2249, 273, F2, 2, 122) (dual of [(273, 2), 297, 123]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2249, 273, F2, 3, 122) (dual of [(273, 3), 570, 123]-NRT-code) | [i] | ||
5 | No linear OOA(2249, 273, F2, 4, 122) (dual of [(273, 4), 843, 123]-NRT-code) | [i] | ||
6 | No linear OOA(2249, 273, F2, 5, 122) (dual of [(273, 5), 1116, 123]-NRT-code) | [i] | ||
7 | No linear OOA(2249, 273, F2, 6, 122) (dual of [(273, 6), 1389, 123]-NRT-code) | [i] | ||
8 | No linear OOA(2249, 273, F2, 7, 122) (dual of [(273, 7), 1662, 123]-NRT-code) | [i] | ||
9 | No linear OOA(2249, 273, F2, 8, 122) (dual of [(273, 8), 1935, 123]-NRT-code) | [i] | ||
10 | No digital (127, 249, 273)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2250, 283, F2, 122) (dual of [283, 33, 123]-code) | [i] | Construction Y1 (Bound) |