Information on Result #546538
There is no linear OA(2250, 267, F2, 124) (dual of [267, 17, 125]-code), because residual code would yield OA(2126, 142, S2, 62), but
- the linear programming bound shows that M ≥ 944964 132939 446113 037791 284838 020323 213312 / 10545 > 2126 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2251, 268, F2, 125) (dual of [268, 17, 126]-code) | [i] | Truncation | |
2 | No linear OOA(2251, 267, F2, 2, 125) (dual of [(267, 2), 283, 126]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2252, 267, F2, 2, 126) (dual of [(267, 2), 282, 127]-NRT-code) | [i] | ||
4 | No linear OOA(2253, 267, F2, 2, 127) (dual of [(267, 2), 281, 128]-NRT-code) | [i] | ||
5 | No linear OOA(2250, 267, F2, 2, 124) (dual of [(267, 2), 284, 125]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(2250, 267, F2, 3, 124) (dual of [(267, 3), 551, 125]-NRT-code) | [i] | ||
7 | No linear OOA(2250, 267, F2, 4, 124) (dual of [(267, 4), 818, 125]-NRT-code) | [i] | ||
8 | No linear OOA(2250, 267, F2, 5, 124) (dual of [(267, 5), 1085, 125]-NRT-code) | [i] | ||
9 | No linear OOA(2250, 267, F2, 6, 124) (dual of [(267, 6), 1352, 125]-NRT-code) | [i] | ||
10 | No linear OOA(2250, 267, F2, 7, 124) (dual of [(267, 7), 1619, 125]-NRT-code) | [i] | ||
11 | No linear OOA(2250, 267, F2, 8, 124) (dual of [(267, 8), 1886, 125]-NRT-code) | [i] | ||
12 | No digital (126, 250, 267)-net over F2 | [i] | Extracting Embedded Orthogonal Array |