Information on Result #546551
There is no linear OA(2255, 274, F2, 126) (dual of [274, 19, 127]-code), because residual code would yield OA(2129, 147, S2, 63), but
- 1 times truncation [i] would yield OA(2128, 146, S2, 62), but
- the linear programming bound shows that M ≥ 10 546031 115613 724859 656905 833525 360409 444352 / 30229 > 2128 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2256, 275, F2, 127) (dual of [275, 19, 128]-code) | [i] | Truncation | |
2 | No linear OOA(2256, 274, F2, 2, 127) (dual of [(274, 2), 292, 128]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2255, 274, F2, 2, 126) (dual of [(274, 2), 293, 127]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2255, 274, F2, 3, 126) (dual of [(274, 3), 567, 127]-NRT-code) | [i] | ||
5 | No linear OOA(2255, 274, F2, 4, 126) (dual of [(274, 4), 841, 127]-NRT-code) | [i] | ||
6 | No linear OOA(2255, 274, F2, 5, 126) (dual of [(274, 5), 1115, 127]-NRT-code) | [i] | ||
7 | No linear OOA(2255, 274, F2, 6, 126) (dual of [(274, 6), 1389, 127]-NRT-code) | [i] | ||
8 | No linear OOA(2255, 274, F2, 7, 126) (dual of [(274, 7), 1663, 127]-NRT-code) | [i] | ||
9 | No linear OOA(2255, 274, F2, 8, 126) (dual of [(274, 8), 1937, 127]-NRT-code) | [i] | ||
10 | No digital (129, 255, 274)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2256, 282, F2, 126) (dual of [282, 26, 127]-code) | [i] | Construction Y1 (Bound) |