Information on Result #546914
There is no linear OA(3221, 348, F3, 141) (dual of [348, 127, 142]-code), because residual code would yield OA(380, 206, S3, 47), but
- 5 times truncation [i] would yield OA(375, 201, S3, 42), but
- the linear programming bound shows that M ≥ 70 125936 773107 976834 379244 843784 716640 335910 577502 309916 609029 015855 123273 912868 189563 572000 000000 / 109 901819 499502 271926 662008 620205 982068 132289 165070 372767 942049 > 375 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3222, 349, F3, 142) (dual of [349, 127, 143]-code) | [i] | Truncation | |
2 | No linear OA(3223, 350, F3, 143) (dual of [350, 127, 144]-code) | [i] | ||
3 | No linear OOA(3222, 348, F3, 2, 142) (dual of [(348, 2), 474, 143]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3223, 348, F3, 2, 143) (dual of [(348, 2), 473, 144]-NRT-code) | [i] | ||
5 | No linear OOA(3221, 348, F3, 2, 141) (dual of [(348, 2), 475, 142]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3221, 348, F3, 3, 141) (dual of [(348, 3), 823, 142]-NRT-code) | [i] | ||
7 | No linear OOA(3221, 348, F3, 4, 141) (dual of [(348, 4), 1171, 142]-NRT-code) | [i] | ||
8 | No linear OOA(3221, 348, F3, 5, 141) (dual of [(348, 5), 1519, 142]-NRT-code) | [i] | ||
9 | No digital (80, 221, 348)-net over F3 | [i] | Extracting Embedded Orthogonal Array |