Information on Result #546941
There is no linear OA(3226, 360, F3, 144) (dual of [360, 134, 145]-code), because residual code would yield linear OA(382, 215, F3, 48) (dual of [215, 133, 49]-code), but
- the Johnson bound shows that N ≤ 2633 391490 584373 459265 026071 777086 821369 449862 527703 301746 510338 < 3133 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3227, 361, F3, 145) (dual of [361, 134, 146]-code) | [i] | Truncation | |
2 | No linear OA(3228, 362, F3, 146) (dual of [362, 134, 147]-code) | [i] | ||
3 | No linear OOA(3227, 360, F3, 2, 145) (dual of [(360, 2), 493, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3228, 360, F3, 2, 146) (dual of [(360, 2), 492, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3226, 360, F3, 2, 144) (dual of [(360, 2), 494, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3226, 360, F3, 3, 144) (dual of [(360, 3), 854, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3226, 360, F3, 4, 144) (dual of [(360, 4), 1214, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3226, 360, F3, 5, 144) (dual of [(360, 5), 1574, 145]-NRT-code) | [i] | ||
9 | No digital (82, 226, 360)-net over F3 | [i] | Extracting Embedded Orthogonal Array |