Information on Result #546960
There is no linear OA(3221, 234, F3, 147) (dual of [234, 13, 148]-code), because residual code would yield OA(374, 86, S3, 49), but
- the linear programming bound shows that M ≥ 33848 221935 885216 439383 055137 261775 150629 / 151525 > 374 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3222, 235, F3, 148) (dual of [235, 13, 149]-code) | [i] | Truncation | |
2 | No linear OA(3223, 236, F3, 149) (dual of [236, 13, 150]-code) | [i] | ||
3 | No linear OOA(3222, 234, F3, 2, 148) (dual of [(234, 2), 246, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3223, 234, F3, 2, 149) (dual of [(234, 2), 245, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3221, 234, F3, 2, 147) (dual of [(234, 2), 247, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3221, 234, F3, 3, 147) (dual of [(234, 3), 481, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3221, 234, F3, 4, 147) (dual of [(234, 4), 715, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3221, 234, F3, 5, 147) (dual of [(234, 5), 949, 148]-NRT-code) | [i] | ||
9 | No digital (74, 221, 234)-net over F3 | [i] | Extracting Embedded Orthogonal Array |