Information on Result #546988
There is no linear OA(3225, 237, F3, 150) (dual of [237, 12, 151]-code), because residual code would yield OA(375, 86, S3, 50), but
- the linear programming bound shows that M ≥ 14 616371 714296 425318 957520 407678 625149 870087 / 21 437119 > 375 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3226, 238, F3, 151) (dual of [238, 12, 152]-code) | [i] | Truncation | |
2 | No linear OA(3227, 239, F3, 152) (dual of [239, 12, 153]-code) | [i] | ||
3 | No linear OOA(3226, 237, F3, 2, 151) (dual of [(237, 2), 248, 152]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3227, 237, F3, 2, 152) (dual of [(237, 2), 247, 153]-NRT-code) | [i] | ||
5 | No linear OOA(3225, 237, F3, 2, 150) (dual of [(237, 2), 249, 151]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3225, 237, F3, 3, 150) (dual of [(237, 3), 486, 151]-NRT-code) | [i] | ||
7 | No linear OOA(3225, 237, F3, 4, 150) (dual of [(237, 4), 723, 151]-NRT-code) | [i] | ||
8 | No linear OOA(3225, 237, F3, 5, 150) (dual of [(237, 5), 960, 151]-NRT-code) | [i] | ||
9 | No digital (75, 225, 237)-net over F3 | [i] | Extracting Embedded Orthogonal Array |