Information on Result #547000
There is no linear OA(3237, 389, F3, 150) (dual of [389, 152, 151]-code), because residual code would yield linear OA(387, 238, F3, 50) (dual of [238, 151, 51]-code), but
- the Johnson bound shows that N ≤ 1 109935 900942 577097 815120 032765 202024 203565 946556 215381 480293 664347 835582 < 3151 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3238, 390, F3, 151) (dual of [390, 152, 152]-code) | [i] | Truncation | |
2 | No linear OA(3239, 391, F3, 152) (dual of [391, 152, 153]-code) | [i] | ||
3 | No linear OOA(3238, 389, F3, 2, 151) (dual of [(389, 2), 540, 152]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3239, 389, F3, 2, 152) (dual of [(389, 2), 539, 153]-NRT-code) | [i] | ||
5 | No linear OOA(3237, 389, F3, 2, 150) (dual of [(389, 2), 541, 151]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3237, 389, F3, 3, 150) (dual of [(389, 3), 930, 151]-NRT-code) | [i] | ||
7 | No linear OOA(3237, 389, F3, 4, 150) (dual of [(389, 4), 1319, 151]-NRT-code) | [i] | ||
8 | No linear OOA(3237, 389, F3, 5, 150) (dual of [(389, 5), 1708, 151]-NRT-code) | [i] | ||
9 | No digital (87, 237, 389)-net over F3 | [i] | Extracting Embedded Orthogonal Array |