Information on Result #547062
There is no linear OA(3239, 252, F3, 159) (dual of [252, 13, 160]-code), because residual code would yield OA(380, 92, S3, 53), but
- the linear programming bound shows that M ≥ 2 550145 733885 710214 972383 625690 731033 510053 / 13237 > 380 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3240, 253, F3, 160) (dual of [253, 13, 161]-code) | [i] | Truncation | |
2 | No linear OA(3241, 254, F3, 161) (dual of [254, 13, 162]-code) | [i] | ||
3 | No linear OOA(3240, 252, F3, 2, 160) (dual of [(252, 2), 264, 161]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3241, 252, F3, 2, 161) (dual of [(252, 2), 263, 162]-NRT-code) | [i] | ||
5 | No linear OOA(3239, 252, F3, 2, 159) (dual of [(252, 2), 265, 160]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3239, 252, F3, 3, 159) (dual of [(252, 3), 517, 160]-NRT-code) | [i] | ||
7 | No linear OOA(3239, 252, F3, 4, 159) (dual of [(252, 4), 769, 160]-NRT-code) | [i] | ||
8 | No linear OOA(3239, 252, F3, 5, 159) (dual of [(252, 5), 1021, 160]-NRT-code) | [i] | ||
9 | No digital (80, 239, 252)-net over F3 | [i] | Extracting Embedded Orthogonal Array |